

APPENDIX D Traffic Impact Analysis

Prepared by

FEHR & PEERS

600 Wilshire Boulevard Suite 1050 Los Angeles, CA 213.261.3050

Prepared for

City of Duarte

Duarte Station Specific Plan

Transportation
Impact Study
July 2019

Table of Contents

1.	INTRODUCTION	1
	Project Description	1
	Study Scope	6
	Traffic Scenarios	6
	Study Analysis Locations	6
2.	EXISTING CONDITIONS	8
	Study Area	3
	Existing Street System	
	Transit Lines	10
	Existing Bicycle and Pedestrian Facilities	12
	Existing Traffic Volumes and Level of Service	17
	Existing Base Traffic Volumes	17
	Level of Service Methodology	17
	Existing Level of Service	19
3.	TRAFFIC PROJECTIONS	23
	Project Traffic	23
	Project Total Trip Generation	23
	Project Traffic Distribution	24
	Project Traffic Assignment	27
	Existing plus Project Traffic Projections	27
	Future Traffic Projections	27
	Background or Ambient Growth	27
	Related Projects	28
	Future Base Traffic Volumes	31
	Future plus Project Traffic Projections	31
4.	INTERSECTION TRAFFIC IMPACT ANALYSIS	32
	Criteria for Determination of Significant Traffic Impact	32
	Existing plus Project Impact Analysis	33
	Existing plus Project Traffic Level of Service	33

	Existing plus Project Intersection Impacts	33
	Future Plus Project Impact Analysis	37
	Future Traffic Conditions	37
	Future plus Project Traffic Conditions	37
	Future plus Project Intersection Impacts	38
	Signal Warrant Analysis	41
	Mitigation Measures	43
	Mitigation Program Elements	43
	Physical Improvements Determined to be Feasible	43
	Mitigation Measures Evaluated but Not Recommended	44
	Summary of Significant Impacts after Proposed Mitigation Measures	44
5.	REGIONAL TRANSPORTATION SYSTEM IMPACT ANALYSIS	47
	CMP Regional Traffic Impact Analysis	47
	Significant Traffic Impact Criteria	47
	Arterial Monitoring Stations	47
	Freeways	48
	CMP Regional Public Transit Impact Analysis	48
6.	VEHICLES MILES TRAVELED ANALYSIS	50
	Average Trip Length Evaluation	50
	Trip Generation Determination	51
	Service Population Determination	51
	VMT Estimate	52
	VMT Per Capita Estimate	52
7.	FREEWAY ANALYSIS	54
	Off-Ramp Queuing Analysis	54
	Queuing Analysis	55
	Mainline Freeway Segment Analysis	58
	Existing and Existing plus Project Mainline Level of Service	58
	Future and Future plus Project Mainline Level of Service	59
8.	SUMMARY AND CONCLUSIONS	63

Appendices

Appendix A: Methodologies & Assumptions Memo

Appendix B: Intersection Counts

Appendix C: Lane Configurations & Volumes

Appendix D: Intersection LOS Analysis

Appendix E: Signal Warrant Analysis

Appendix F: Freeway Analysis - Mainline & Queueing

List of Figures

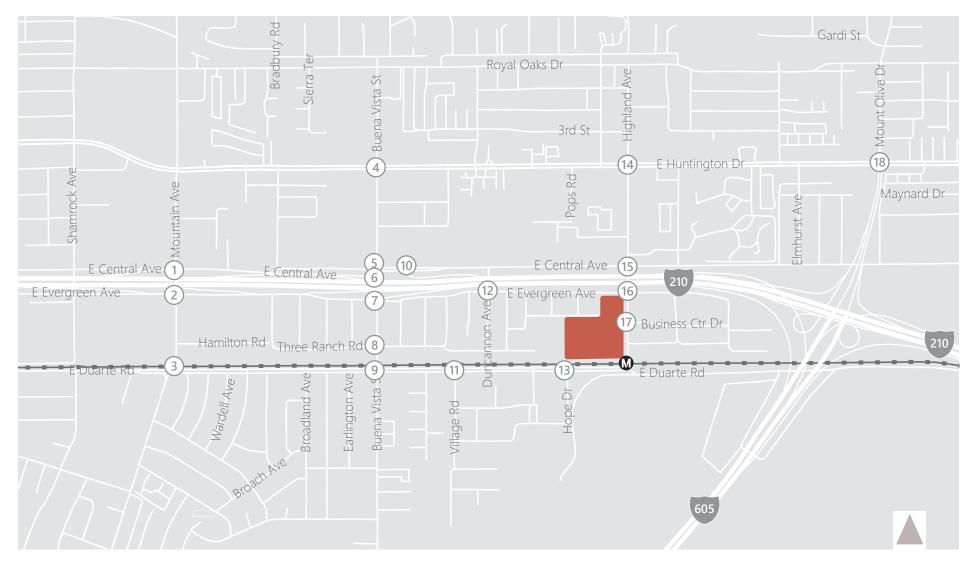
Figure 1	Study Intersection Locations	3
3	Draft Site Plan	
•	Draft Site Plan	
•		
_	Study Area Transit Service	
•	Study Area Bicycle Facilities	16
Figure 6	Trip Distribution	26
Figure 7	Related Projects	30

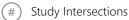
List of Tables

Table 1 - Study Area Intersections	7
Table 2 – Study Area Transit Service	12
Table 3 - Level of Service Definitions for Signalized Intersections	18
Table 4 - Level of Service Definitions for UnSignalized Intersections	20
Table 5A – Existing Year (2018) Intersection Levels of Service For Signalized Study Intersections	21
Table 5B - Existing year (2018) Intersection Levels of Service For Unsignalized Study Intersections	22
Table 6 - Trip Generation Estimates	25
Table 7 - Related Projects	29
Table 8A - Existing Year (2018) Plus Project Intersection Levels Of Service And Impact Analysis For Signalized Study Intersections	35
Table 8B - Existing Year (2018) Plus Project Intersection Levels Of Service And Impact Analysis For Unsignalized Study Intersections	36
Table 9A - Future Year (2025) Plus Project Intersection Levels Of Service And Impact Analysis For Signalized Intersections	39
Table 9B - Future Year (2025) Plus Project Intersection Levels Of Service And Impact Analysis For Unignalized Intersections	40
Table 10 - Signal Warrant Analysis	42
Table 11 - Existing Year (2018) Plus Project Intersection Levels Of Service And Impact Analysis - Mitigations	45
Table 12 - Future Year (2025) Plus Project Intersection Levels Of Service And Impact Analysis - Mitigation	
Table 13 - Vehicle Miles Traveled (VMT) Analysis	53
Table 14 - Existing Year (2018) Plus Project Peak Hour Off-Ramp Intersection Queues	56
Table 15 - Future Year (2025) Peak Hour Off-Ramp Intersection Queues	57
Table 16 – Existing Freeway Mainline Level of Service	61
Table 17 – Future Freeway Mainline Level of Service	62

1. INTRODUCTION

This report documents the assumptions, methodologies, and findings of a study conducted by Fehr & Peers to evaluate the potential traffic impacts of the proposed Duarte Station Specific Plan Update (Project) located in the City of Duarte at the north-west corner of Duarte Road & Highland Avenue. The Project is the adoption and long-term implementation of the Duarte Station Specific Plan, as amended.

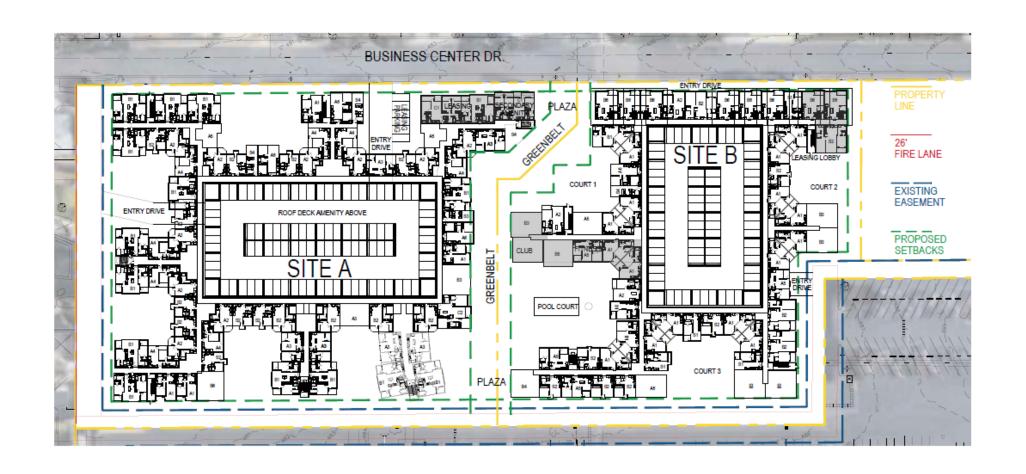

This report is divided into nine chapters, including this introduction. Chapter 2 describes the existing transportation conditions including an inventory of the streets, highways, and transit service in the study area, a summary of traffic volumes, and an assessment of operating conditions. The methodologies used to develop traffic forecasts for the Existing, Existing plus Project, Future, and Future plus Project scenarios and the forecasts themselves are included in Chapter 3. Chapter 4 presents an assessment of potential intersection traffic impacts of the proposed Project under both existing and future conditions. The results of the regional transportation system analysis are provided in Chapter 5. Chapter 6 provides a vehicle miles traveled (VMT) assessment of the Project. Chapter 7 summarizes the California Department of Transportation (Caltrans) freeway analysis. Chapter 8 includes a parking and site access overview. Chapter 9 contains the study conclusions. Appendices to this report include details of the technical analysis.


PROJECT DESCRIPTION

The "Project site" is located north of Duarte Road and west of Highland Avenue. The adjacent land uses include the I-210 Freeway to the north, residential uses to the west, City of Hope National Medical Center to the south, and commercial/industrial land uses to the east. Figure 1 illustrates the location of the Project in relation to the surrounding street system. Regional access to the Project site is provided by Interstate 605 (I-605) with access ramps approximately 0.7 miles north-east of the Project site, and Interstate 210 (I-210) with access ramps approximately 0.6 miles west of the Project site. The Project is located immediately north of the Duarte/City of Hope Gold Line Metro Station. The approximately 19.08-acre Specific Plan area contains four parcels, each under separate ownership. Currently, the Project site is occupied by 313,955 square feet of industrial land uses.

The Project as analyzed in this study involves the construction of up to 1,400 multi-family mid-rise residential dwelling units, 6,250 square feet of retail uses, 6,250 square feet of high turnover (sit-down) restaurant uses, and 100,000 square feet of office space. The Project as analyzed represented potential uses. Actual mix of uses may adjust over time; however, this estimate represents the highest anticipated intensity of uses.

A draft site plan of the Project is shown in Figure 2 and Figure 3. Phase 1 of the preliminary development plan is indicated in Figure 2. Phase 1 will also include an affordable housing development on Site C, just east of Site B. Future phases will support development on the northernmost and southernmost parcels. A conceptual plan for the southernmost parcel is included in Figure 3, with the northern parcel identified for future buildout as well.



Project Site Boundary

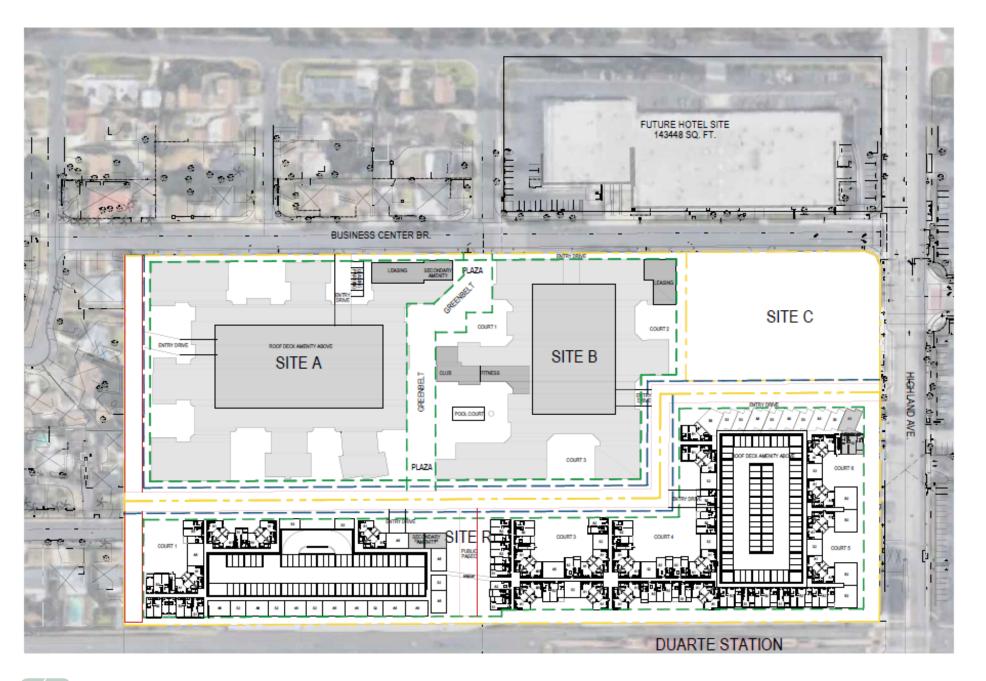


Figure 3

STUDY SCOPE

The scope of work for this study was determined in consultation with the City of Duarte Planning Division. The base assumptions and technical methodologies were discussed with the planning staff as part of the study approach (see Appendix A).

TRAFFIC SCENARIOS

The study assumes that the Project buildout of both Phase 1 and future phases will take place by 2025 and is directed at analyzing the potential Project-generated traffic impact on the local street system under both existing and future year traffic conditions. The following traffic scenarios have been developed and analyzed as part of this study:

- <u>Existing Conditions</u> The analysis of existing traffic conditions is intended to provide a basis for the remainder of the study. The existing conditions analysis includes a description of the transportation system serving the Project site, existing traffic volumes, and an assessment of the operating conditions at the study analysis locations described below.
- <u>Existing plus Project Conditions</u> This traffic scenario provides projected traffic volumes and an assessment of operating conditions under existing conditions with the addition of Project-generated traffic. The impacts of the Project on existing traffic operating conditions were then identified.
- <u>Future (Year 2025) Conditions</u> Future traffic projections without the Project were developed for the year 2025. The objective of this analysis was to project future traffic growth and operating conditions that could be expected to result from regional growth and related projects in the vicinity of the Project site by the year 2025.
- <u>Future (Year 2025) plus Project Conditions</u> This traffic scenario provides projected traffic volumes
 and an assessment of operating conditions under future conditions with the addition of Projectgenerated traffic. The impacts of the Project on future traffic operating conditions were then
 identified.

STUDY ANALYSIS LOCATIONS

Table 1 identifies the intersections studied as part of the traffic study, illustrated in Figure 1. The scope of the traffic analysis and selection of study intersections were developed in conjunction with City of Duarte planning and engineering staff. Eighteen study intersections were selected as part of the transportation analysis to be evaluated for potential Project impacts. Table 1 identifies the intersection cross streets and control type of each intersection.

TABLE 1 DUARTE STATION SPECIFIC PLAN STUDY AREA INTERSECTIONS

ID	STUDY INTERSECTION	CONTROL TYPE
1	Mountain Ave & Central Ave	Signalized
2	Mountain Ave & Evergreen Ave	Signalized
3	Mountain Ave & Duarte Rd	Signalized
4	Buena Vista St & Huntington Dr	Signalized
5	Buena Vista St & Central Ave	Signalized
6	Buena Vista St & I-210 WB On-ramp	Signalized
7	Buena Vista St & Evergreen St/I-210 EB On-ramp	Signalized
8	Buena Vista St & 3 Ranch Rd	Unsignalized
9	Buena Vista St & Duarte Rd	Signalized
10	I-210 WB Off-ramp & Central Ave	Unsignalized
11	Village Rd & Duarte Rd	Unsignalized
12	Duncannon Ave & Evergreen St	Unsignalized
13	Hope Dr & Duarte Rd	Signalized
14	Highland Ave & Huntington Dr	Signalized
15	Highland Ave & Central Ave	Signalized
16	Highland Ave & Evergreen St	Unsignalized
17	Highland Ave & Business Center Dr	Signalized
18	I-605/Mt Olive Dr & Huntington Dr	Signalized

2. EXISTING CONDITIONS

A comprehensive data collection effort was undertaken to develop a detailed description of existing transportation conditions in the study area. The assessment of conditions relevant to this study includes a description of the study area, an inventory of the local street system in the vicinity of the Project site, a review of traffic volumes on these facilities, an assessment of the resulting operating conditions, and the current transit service in the study area. A detailed description of these elements is presented in this chapter.

STUDY AREA

The Project site is located within the City of Duarte on Highland Avenue and Business Center Drive. The study area selected for analysis extends to Mountain Avenue to the west, Huntington Drive to the north, Mount Olive Drive to the east, and Duarte Road to the south. The study area also contains the Interstate-210 (I-210) and Interstate-605 (I-605) freeways, which are under the jurisdiction of the California Department of Transportation (Caltrans). See Figure 1 for a graphic depiction of the study area.

EXISTING STREET SYSTEM

Major streets serving the study area include Huntington Drive, Central Avenue, and Duarte Road in the east-west direction and Mountain Avenue, Buena Vista Street, and Highland Avenue in the north-south direction. Regional access to and from the study area is provided by the I-210 Freeway immediately north and I-605 Freeway 0.4 miles east of the Project site. The characteristics of analyzed streets serving the study area are listed below. The street descriptions include the existing designation under the current City of Duarte General Plan Circulation Element.

Freeways

- I-210 runs in an east-west direction north of the Project site and extends from I-5 in the west to San Bernardino in the east. I-210 provides four general travel lanes and one high-occupancy vehicle (HOV) lane in each direction within the study area. A number of interchanges are provided between Mountain Avenue and Mount Olive Drive in the study area.
- **I-605** runs generally in a north-south direction east of the Project site and extends from Huntington Drive in Duarte in the north to I-405 Freeway in the south. The freeway provides four general travel lanes in each direction within the study area. The Project site can access I-605 via Huntington Drive to the north and Arrow Highway in the south.

East – West Streets

- **Huntington Drive** is an arterial street that runs through the northern portion of the study area. It is a component of Historic U.S. Route 66. Huntington Drive provides two travel lanes in each direction with a median and left-turn pockets through the corridor. Generally, the street allows parking on both sides of the roadway with a posted speed limit of 40 miles per hour.
- **Central Avenue** is a collector street that runs parallel to and north of I-210. The street generally provides one travel lane in each direction between Fernley Drive and Buena Vista Street, after which it turns into a two-lane one-way street in the westbound direction. It also provides access to the I-210 ramps. The corridor allows parking on both sides of the roadway east of Buena Vista and the posted speed limit is 35 miles per hour.
- **Evergreen Street** is a collector street that runs parallel to and south of the I-210. The street provides two travel lanes in the eastward direction with access to I-210 between Mountain Avenue and Buena Vista Street and no parking is allowed. The street provides one lane in each direction between Buena Vista Street and Highland Avenue with parking allowed on the south side of the street and limited parking on the north side of the street. The posted speed limit is 30 miles per hour.
- **Business Center Drive** is a local street that runs through the Project site. The street provides one travel lane in each direction and parking on both sides of the street.
- **Three Ranch Road** is a local street that runs just west of the Project site through residential neighborhoods. The street provides one travel lane in each direction and allows parking on both sides of the street.
- **Duarte Road** is an arterial street that runs directly south of the Project site parallel to the Metro Gold Line. The street provides two travel lanes in each direction with a median and left-turn pockets throughout the corridor. Parking is not allowed on either side of the street. The posted speed limit is 40 miles per hour.

North - South Streets

- Mountain Avenue is an arterial street that runs in the western portion of the study area. The street
 provides two travel lanes in each direction north of Duarte Road and one travel lane in each
 direction south of Duarte Road. Mountain Avenue also has a center turn lane. Parking is generally
 allowed on both sides of the street south of Duarte Road, and the posted speed limit is 40 miles
 per hour.
- **Buena Vista Street** is an arterial street that runs through the center of the study area. The street provides two travel lanes in each direction and has parking on both sides of the street south of I-210. North of the freeway, the street has bike lanes on both sides. The posted speed limit is 35 miles per hour.
- **Village Road** is a private drive that runs south of Duarte Road between Hope Drive and Buena Vista Street. The street provides one travel lane in each direction, and no parking is allowed.
- **Hope Drive** is a private drive that runs south of Duarte Road between Village Road and Highland Avenue. The street provides two lanes in the southern direction and one in the northern direction. No parking is allowed on either side.
- **Duncannon Avenue** is a local street that runs west of the Project site. The street provides one travel lane in each direction, and parking is allowed on both sides of the street.
- **Highland Avenue** is an arterial street that runs east of the Project site. The street provides two travel lanes in each direction and has parking on both sides of the street, with the exception of immediately adjacent to the Project site. The posted speed limit is 35 miles per hour.
- **Mt. Olive Drive** is a collector street that runs north from the I-605 terminus. The street provides one travel lane in the north direction and two travel lanes in the south direction. Parking is allowed on the west side of the street and is restricted on the east of the street. The posted speed limit is 35 miles per hour.

Lane configurations of the study intersections are illustrated in Appendix C.

TRANSIT LINES

Table 2 and Figure 4 show the various transit lines providing service in the Project vicinity. Transit lines in the vicinity of the Project site include:

- Metro Gold Line The Metro Gold Line is a light-rail transit line running from East Los Angeles to Azusa via Los Angeles Union Station. The Metro Gold Line opened on March 5, 2016. The study area is served by the Duarte/City of Hope Station (directly accessible from the Project site). The Gold Line has an average headway of seven minutes during the weekday AM and PM peak hours.
- Metro Line 264/267 Metro Line 264/267 provides local service running between Altadena and Duarte. Line 264 has an average headway of approximately 60 minutes during the weekday AM and

PM peak hours. The line runs east to west through the Project site and connects to the Duarte/City of Hope Light Rail Station.

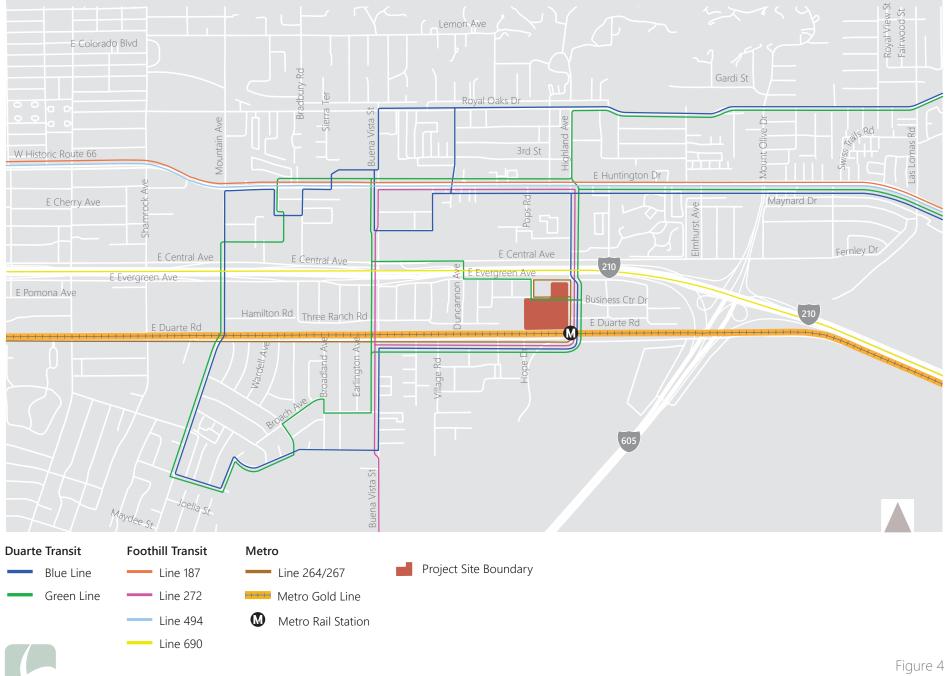

- <u>Foothill Transit Line 187</u> Foothill Transit Line 187 provides service to Pasadena, Arcadia, Duarte, and Azusa. Line 187 has an average headway of 15 to 20 minutes during the weekday AM and PM peak hours. Line 187 runs in the northern section of the study area.
- <u>Foothill Transit Line 272</u> Foothill Transit Line 272 provides service between Duarte and West Covina, through Irwindale and Baldwin Park. Line 272 has an average headway of 30-60 minutes during the weekday AM and PM peak hours. Line 272 runs directly through the northern and southern sections of the study area.
- <u>Foothill Transit Line 494</u> Foothill Transit Line 494 provides service between El Monte and San Dimas, through Monrovia, Arcadia, Duarte, Azusa, Glendora, and San Dimas. Line 494 has an average headway of 60 minutes during the weekday AM and PM peak hours. Line 494 runs from east to west through the northern edge of the study area.
- <u>Foothill Transit Line 690</u> Foothill Transit Line 690 provides service between Pasadena and Claremont through La Verne, San Dimas, Glendora, Azusa, and Pasadena. Line 690 has an average headway of 15-20 minutes during the weekday AM and PM peak hours. Line 690 runs east to west through the northern edge of the study area.
- <u>Duarte Transit Green Line</u> The Duarte Transit Green Line operates in a clockwise direction around
 the city of Duarte. The Green Line has an average headway of one hour during the weekday AM
 and PM peak hours. The Green Line runs around the study area.
- <u>Duarte Transit Blue Line</u> The Duarte Transit Blue Line operates in a counterclockwise direction around the city of Duarte. The Blue Line has an average headway of one hour during the weekday AM and PM peak hours. The Blue Line runs around the study area.

TABLE 2
DUARTE STATION SPECIFIC PLAN
STUDY AREA TRANSIT SERVICE

64 87	Operator Service Type		Service From	Via	Weekday Peak Period Headways		
					АМ	PM	
Gold Line	Metro	Light Rail	Azusa to Union Station	Duarte Road	7 mins.	7 mins.	
264	Metro	Local	Altadena to Duarte	Duarte Road	60 mins.	60 mins.	
187	Foothill Transit	Local	Pasadena to Azusa	Huntington Drive	15-20 mins.	15-20 mins.	
272	Foothill Transit	Local	Duarte to Baldwin Park Buena Vista Street		30-60 mins.	30-60 mins.	
492	Foothill Transit	Local	Montclair to El Monte Arrow Highway		20-30 mins.	20-30 mins.	
494	Foothill Transit	Local	El Monte to San Dimas Huntington Avenue 60 m		60 mins.	60 mins.	
690	Foothill Transit	Local	Pasadena to Claremont Foothill Blvd		15-20 mins.	15-20 mins.	
Green Line	Duarte Transit	Local	Duarte Huntington Drive 60 min		60 mins.	60 mins.	
Blue Line	Duarte Transit	Local	Duarte	Huntington Drive	10-15 mins.	10-15 mins.	

Source:

Duarte General Plan, 2007

EXISTING BICYCLE AND PEDESTRIAN FACILITIES

Bicycle Facilities

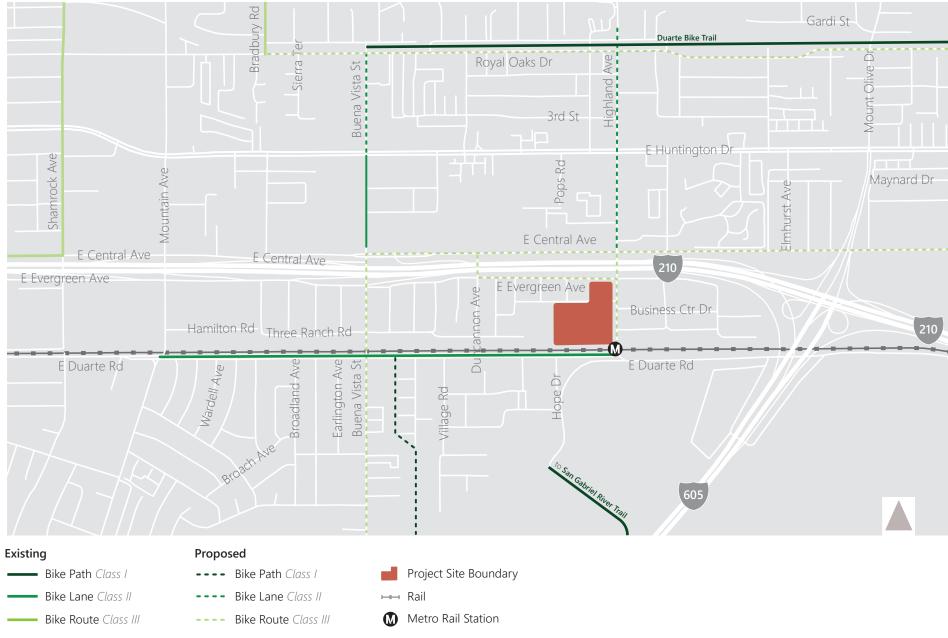
Figure 5 shows existing and planned City of Duarte designated bicycle facilities in the Project vicinity. Per Caltrans, a Class I bicycle facility is a bike path, which has exclusive right of way for bicyclists and pedestrians away from the roadway with crossflows by motor traffic minimized. A Class II bicycle facility is a bike lane established along the street and is defined by pavement striping and signage to delineate a portion of the roadway dedicated for bicycle travel. The bike lane can also be buffered to provide a greater separation from adjacent traffic. A Class III bicycle facility is a bike route which designates a preferred route for bicyclists on streets shared with motor traffic and is not designated as a separate facility. A Class IV bike facility is a separated bikeway, often referred to as a protected bike lane that is physically separated from motor traffic with a vertical feature.

Below is a description of the existing bicycle facilities in the City of Duarte:

- Royal Oaks Drive a Class I bicycle facility on Royal Oaks Drive provides a bike path in the northern part of the study area, from Buena Vista Street to Vineyard Avenue.
- <u>Duarte Road</u> a Class II bicycle facility on Duarte Road provides a bike lane from Mountain Avenue to the Duarte Gold Line station.
- <u>Emerald Necklace Bike Trail</u> a Class I bicycle facility is located within the Santa Fe Recreation area adjacent to the City of Hope in the southern part of the study area. It provides a bike path connecting San Gabriel River Bike Trail and Duarte/City of Hope Gold Line Station.
- <u>Buena Vista Street</u> a Class II bicycle facility on Buena Vista Street provides a bike lane from Huntington Drive to Central Avenue.
- <u>Shamrock Avenue</u> a Class III bicycle facility on Shamrock Avenue provides a bike route north of Central Avenue.

In addition to the existing facilities, the City of Duarte is planning to add other Class I, Class II, and Class III bicycle facilities in the Project vicinity. Proposed Class I bicycle facilities include a bike path south of Duarte Road between Buena Vista Street and Village Road. Proposed Class II bicycle facilities include a bike lane on Buena Vista Street between Central Avenue and Royal Oaks Drive and on Highland Avenue between Evergreen Street and Royal Oaks Drive. Proposed Class III bicycle facilities include a bike route on Royal Oaks Drive east of Bradbury Avenue, on Central Avenue east of Buena Vista Street, on Evergreen Street between Duncannon Avenue and Highland Avenue, on Highland Avenue between Duarte Road and Evergreen Street, and on Buena Vista Street south of Central Avenue.

Pedestrian Facilities


There are pedestrian facilities adjacent to the Project site. Along the eastern edge of the Project site (Highland Avenue), an approximately nine-foot sidewalk is present on the western side of Highland Avenue. Business Center Drive, which runs through the Project site, has a six-foot sidewalk present on the southern side. There is no sidewalk present on the northern edge of the Project site along Evergreen Street.

A six-foot sidewalk is present on the southern side of Duarte Road between Mountain Avenue and 800 feet east of Hope Drive, where it abruptly ends. On the northern side of Duarte Road, an approximately 10-foot sidewalk is present between Mountain Avenue and Highland Avenue.

Pedestrian facilities improvements such as continuations of sidewalks, streetscape improvements, and installations of high-visibility crosswalks are planned along Duarte Road. New sidewalk construction on the southern side of Duarte Road between Hope Drive and East Circle Drive is currently grant-funded.

The following improvements are also anticipated through the Active Transportation Program (ATP):

- Evergreen Pedestrian Walkway Sidewalk along the north side of Evergreen Street between Brightside Avenue and Highland Avenue
- Pedestrian / Bicyclist Connection Corridor Pedestrian corridor south of the I-210 between Buena Vista Street and Brightside Avenue
- Central Pedestrian Walkway Sidewalk along the south side of Central Avenue between Bradbury Avenue to Highland Avenue
- Pedestrian Underpass Connectivity Advanced pedestrian lighting under the I-210 underpasses along Highland Avenue, Duncannon Avenue, and Buena Vista Avenue

EXISTING TRAFFIC VOLUMES AND LEVEL OF SERVICE

This section presents existing base peak hour traffic volumes, describes the methodology used to assess the traffic conditions at each intersection, and analyzes the operating conditions at each, indicating volume-to-capacity (V/C) ratios, delay, and levels of service (LOS).

EXISTING BASE TRAFFIC VOLUMES

Intersection turning movement counts were conducted during the weekday AM peak period (between 7:00 and 9:00 AM) and weekday PM peak period (between 4:00 PM and 6:00 PM) on December 4, 2018. Weekday AM and PM peak hour turning movement counts were determined for each study intersection using these counts.

Traffic count data for the study intersections are contained in Appendix B.

LEVEL OF SERVICE METHODOLOGY

The methodology utilized to calculate the LOS depended on the intersection's method of traffic control. Two different intersection LOS methodologies were used when reviewing the Project's existing traffic conditions: the Intersection Capacity Utilization (ICU) and the *2010 Highway Capacity Manual* (HCM).

Intersection Capacity Utilization

The ICU method of intersection capacity analysis determines the intersection V/C ratio and corresponding LOS for the turning movements and intersection characteristics at signalized intersections. "Capacity" represents the maximum volume of vehicles in the critical lanes that have a reasonable expectation of passing through an intersection in one hour under prevailing roadway and traffic conditions. The ICU method calculates the V/C ratio for each critical movement by dividing volume by capacity. The V/C ratios for each critical movement are summed with an added allowance for yellow clearance to determine the total intersection V/C ratio. The total intersection V/C ratio is then matched to the appropriate LOS based on the definitions provided in Table 3.

TABLE 3 LEVEL OF SERVICE DEFINITIONS FOR SIGNALIZED INTERSECTIONS

	Intersection	
Level of Service	Capacity	Definition
	Utilization	
Α	0.000-0.600	EXCELLENT. No Vehicle waits longer than one red
		light and no approach phase is fully used.
В	0.601-0.700	VERY GOOD. An occasional approach phase is
		fully utilized; many drivers begin to feel somewhat
		restricted within groups of vehicles.
С	0.701-0.800	GOOD. Occasionally drivers may have to wait
		through more than one red light; backups may
		develop behind turning vehicles.
D	0.801-0.900	FAIR. Delays may be substantial during portions
		of the rush hours, but enough lower volume periods
		occur to permit clearing of developing lines,
		preventing excessive backups.
E	0.901-1.000	POOR. Represents the most vehicles intersection
		approaches can accommodate; may be long lines
		of waiting vehicles through several signal cycles.
F	> 1.000	FAILURE. Backups from nearby locations or on
		cross streets may restrict or prevent movement of
		vehicles out of the intersection approaches.
		Tremendous delays with continuously increasing
		queue lengths.

Source: Transportation Research Circular No. 212, Interim Materials on Highway Capacity,

Transportation Research Board, 1980.

Highway Capacity Manual

The HCM unsignalized intersection delay was used to determine the intersection delay in seconds and corresponding LOS for the turning movements and intersection characterizes at the unsignalized intersections. The calculation of delay represents the amount of delay experienced by vehicles passing through the intersection. The unsignalized intersections were analyzed using the all-way stop method and the 2-way stop method from the HCM 2010. Delay was calculated based on the worst-case approach (in the case of one- or two-way stop-controlled intersections), or average delay (in the case of all-way stop-controlled intersections), and used to find the corresponding LOS, as presented in Table 4.

EXISTING LEVEL OF SERVICE

Existing traffic volumes were analyzed to determine the projected V/C ratios, delay, and LOS for each intersection. Table 5A and Table 5B summarize the existing weekday peak hour LOS for signalized and unsignalized intersections respectively. The following signalized intersections operate at LOS E or worse under existing conditions:

- 2. Mountain Avenue & Evergreen Avenue (PM peak hour)
- 9. Buena Vista Street & Duarte Road (PM peak hour)
- 18. I-605 Mount Olive Drive & Huntington Drive (PM peak hour)

The following unsignalized study intersections operate at LOS E or worse under existing conditions:

- 10. I-210 Westbound off-ramp & Central Avenue (AM/PM peak hour)
- 11. Village Road & Duarte Road (AM/PM peak hour)

Detailed LOS calculations are provided in Appendix D.

TABLE 4 LEVEL OF SERVICE DEFINITIONS FOR UNSIGNALIZED INTERSECTIONS

Level of Service	Average Total Delay (seconds/vehicle)
А	≤ 10.0
В	> 10.0 and <u><</u> 15.0
С	> 15.0 and <u><</u> 25.0
D	> 25.0 and <u><</u> 35.0
E	> 35.0 and <u><</u> 50.0
F	> 50.0

Source: *Highway Capacity Manual,*Transportation Research Board, 2010.

TABLE 5A DUARTE STATION SPECIFIC PLAN EXISTING YEAR (2018) INTERSECTION LEVELS OF SERVICE SIGNALIZED STUDY INTERSECTIONS

NO.	INTERSECTION	HOUR V/C AM 0.771 PM 0.761 AM 0.652 PM 0.959 AM 0.600 PM 0.678 AM 0.691 PM 0.787 AM 0.556 PM 0.613 AM 0.390 PM 0.524 AM 0.597 PM 0.595 AM 0.808 PM 0.920 AM 0.330 PM 0.415 AM 0.552 PM 0.763 AM 0.346 PM 0.433	EXISTIN	ПNG (2018)			
			V/C	LOS			
1	Mountain Ave & Central Ave	AM	0.771	С			
		PM	0.761	С			
2	Mountain Ave & Evergreen Ave	AM	0.652	В			
		PM	0.959	E			
3	Mountain Ave & Duarte Rd	AM	0.600	Α			
		PM	0.678	В			
4	Buena Vista St & Huntington Dr	AM	0.691	В			
		PM	0.787	С			
5	Buena Vista St & Central Ave	AM	0.556	Α			
		PM	0.613	В			
6	Buena Vista St & I-210 WB On-ramp	AM	0.390	Α			
		PM	0.524	Α			
7	Buena Vista St & Evergreen St/I-210 EB On-ramp	AM	0.597	Α			
		PM	0.595	Α			
9	Buena Vista St & Duarte Rd	AM	0.808	D			
		PM	0.920	E			
13	Hope Dr & Duarte Rd	AM	0.330	Α			
		PM	0.415	Α			
14	Highland Ave & Huntington Dr	AM	0.552	Α			
		PM	0.821	D			
15	Highland Ave & Central Ave	AM	0.565	Α			
		PM	0.763	С			
17	Highland Ave & Business Center Dr	AM	0.346	Α			
		PM	0.433	Α			
18	I-605/Mt Olive Dr & Huntington Dr	AM	0.891	D			
		PM	1.096	F			

TABLE 5B DUARTE STATION SPECIFIC PLAN EXISTING YEAR (2018) INTERSECTION LEVELS OF SERVICE UNSIGNALIZED STUDY INTERSECTIONS

NO.	INTERSECTION	PEAK HOUR	EXISTING (2018)				
			Delay (s)	LOS			
8	Buena Vista St & 3 Ranch Rd	AM	18.9	С			
		PM	22.5	С			
10	I-210 WB Off-ramp & Central Ave	AM	94.4	F			
		PM	94.9	F			
11	Village Rd & Duarte Rd	AM	49.1	E			
		PM	44.3	E			
12	Duncannon Ave & Evergreen St	AM	7.8	А			
		PM	7.5	Α			
16	Highland Ave & Evergreen St	AM	24.3	C			
		PM	22.0	С			

Notes:

Average vehicular delay reported for worst case approach for unsignalized intersections.

3. TRAFFIC PROJECTIONS

PROJECT TRAFFIC

The development of trip generation estimates for the Project was a three-step process: trip generation, trip distribution, and traffic assignment.

PROJECT TOTAL TRIP GENERATION

Trip generation rates published in *Trip Generation*, *10th Edition* (Institute of Transportation Engineers [ITE], 2017) were used to calculate Project trip generation estimates for the proposed multi-family housing (midrise), high-turnover (sit down) restaurant, retail, and office land uses.

Several trip reduction adjustments were applied to the Project's gross trip generation estimates based on the Project's design, location, programming, and provided amenities. Discussion of these credits is summarized below.

Internal Capture Adjustment

Internal trip capture is the portion of vehicular trips generated by a mixed-use development that both begin and end within the development. An example of this would be residents or employees eating dinner at one of the Project's restaurants. Internal trip estimates were made for each of the Project's land uses, based on the specific mix of uses and sizes within the Project utilizing Transportation Research Board (TRB) National Cooperative Highway Research Program (NCHRP) Report 684: Enhancing Internal Trip Capture Estimation for Mixed-Use Developments. This methodology is a best practice for determining internal capture reductions. The NCHRP methodology considers the specific mix and size of uses to determine internal trip capture rates by land use and analysis period.

Transit/Walk/Bike Adjustment

The Project is located in a transit-rich environment, adjacent to the Metro Gold Line Duarte/City of Hope Light Rail Station, and in close proximity to local bus lines. A 15% vehicle trip reduction was applied to each land use; all are located within a quarter-mile walking distance of high-quality transit.

Pass-by Adjustment

Pass-by credits were applied to retail and restaurant uses based on the *Trip Generation Handbook: An ITE Recommended Practice (2003)*. Pass-by trip credits are commonly applied to commercial uses to reflect the situation where a percentage of patrons to the establishment are traveling on the roadway (for instance, on

their way to work) and stop to shop or eat. Under this situation, that trip is already on the roadway and is generated by the ultimate destination of that person's trip. A reduction of 20% was applied to the high-turnover (sit down) restaurant uses and reduction of 50% was applied to the retail uses. No pass-by trip credit is applied to the residential and office uses because traveling to this use is typically the final destination of one's trip, not a destination one chooses as they pass by.

Existing Use Adjustment

Existing uses at the Project site are identified as general light industrial land uses. Generally, when existing land uses are replaced by higher-density uses, the net new trip generation of the new Project is credited because a portion of the new Project's trips are replacing existing trips on the roadway network to the same site for the prior use.

As identified in Table 6, the Project is expected to generate a total estimated net external 6,209 weekday daily trips, including 374 trips (94 inbound/280 outbound) during the weekday AM peak hour and 486 trips (296 inbound/190 outbound) during the weekday PM peak hour.

PROJECT TRAFFIC DISTRIBUTION

The Project trip distribution is based on a variety of different sources such as the Southern California Association of Governments (SCAG) Travel Demand Forecasting Model, the prior Duarte Specific Plan, other approved projects nearby, and Project team experience. A select zone analysis within the SCAG Travel Demand Forecasting Model was used to inform the general distribution patterns for this study. The model used information from the traffic analysis zone (TAZ) where the Project is located to estimate the distribution of trips.

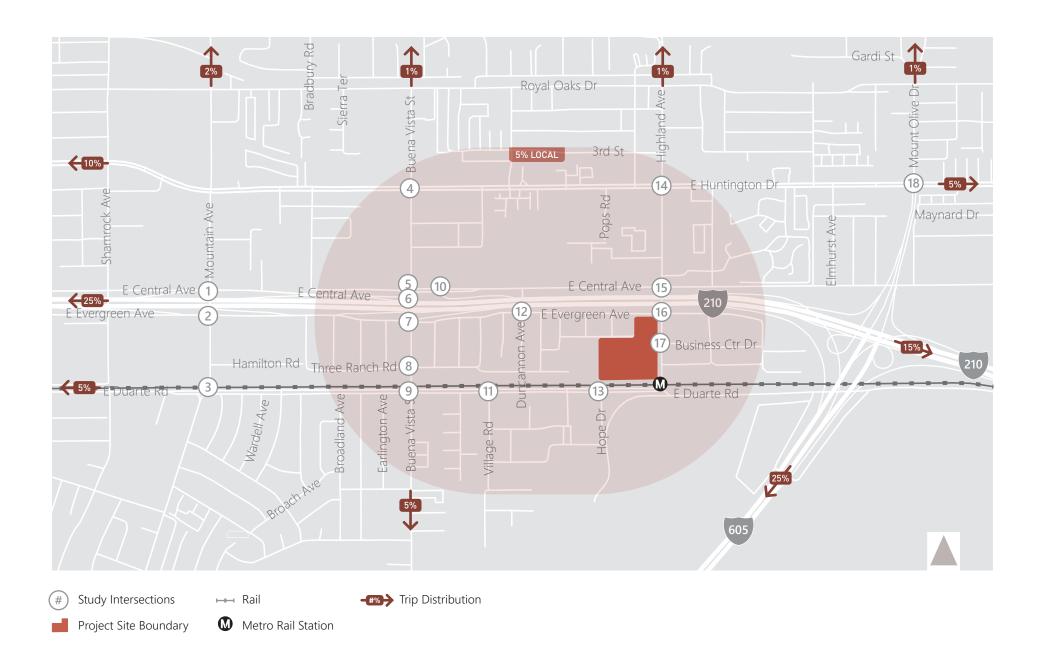

Other important factors used to inform the Project trip distribution included: the characteristics of the street system serving the Project site; accessibility of routes to and from the Project site; locations of commercial centers to which residents of the Project would be drawn; and locations of residential areas from which other persons would be drawn. These are factored into the model but also are used to help refine the outputs. The distribution of Project trips is illustrated in Figure 6.

TABLE 6 DUARTE STATION SPECIFIC PLAN TRIP GENERATION ESTIMATES

ı	ITE Land Use		Trip Generation Rates [a]					Estimated Trip Generation								
Land Use	Code	Size	Daily	AN	И Peak Ho	-	PI	M Peak Ho		Daily	AM	Peak Hour		PM I	Peak Hour	
j	Code		Daily	Rate	In%	Out%	Rate	In%	Out%	Daily	In	Out	Total	ln	Out	Total
PROPOSED PROJECT																
Multifamily Housing (Mid-Rise)[b] Less: Internal capture [c] Less: Transit/Walk/Bike credit [d] Net External Vehicle Trips	221	1,400 DU	[b] 3% 15%	[b] 15%	26% 1%	74% 3%	[b] 15%	61% <i>3</i> %	39% 7%	7,628 (229) (1,110) 6,289	118 (1) (18) <u>99</u>	337 (10) (49) 278	455 (11) (67) <u>377</u>	340 (10) (50) 280	218 (15) (30) 173	558 (25) (80) 453
High-Turnover (Sit Down) Restaurant Less: Internal capture [c] Less: Transit/Walk/Bike credit [d] Total Driveway Trips Less: Pass-by [e] Net External Vehicle Trips	932	6.25 ksf	112.18 28% 15% 20%	9.94 15% 20%	55% 41%	45% 38%	9.77 15% 20%	62% 25%	38% 46%	701 (196) (76) 429 (86) 343	34 (14) (3) 17 (3) 14	28 (11) (3) 14 (3) 11	62 (25) (6) 31 (6) 25	38 (10) (4) 24 (5) 19	23 (11) (2) 10 (2) 8	61 (21) (6) <u>34</u> (7) <u>27</u>
Retail Less: Internal capture [c] Less: Transit/Walk/Bike credit [d] Total Driveway Trips Less: Pass-by [e] Net External Vehicle Trips	820	6.25 ksf	37.75 42% 15% 50%	0.94 15% 50%	62% 57%	38% <i>33</i> %	3.81 15% 50%	48% 70%	52% 55%	236 (99) (21) 116 (58) 58	4 (2) 0 <u>2</u> (1) <u>1</u>	2 (1) 0 1 (1) <u>0</u>	6 (3) 0 <u>3</u> (2) <u>1</u>	12 (8) 0 <u>4</u> (2) <u>2</u>	12 (7) 0 <u>5</u> (3) <u>2</u>	24 (15) 0 <u>9</u> (5) <u>4</u>
Office Less: Internal capture [c] Less: Transit/Walk/Bike credit [d] Net External Vehicle Trips	710	100.00 ksf	[f] 15% 15%	[f] 15%	86% 17%	14% 74%	[f] 15%	16% 60%	84% 5%	1,061 (159) (135) 767	103 (18) (13) <u>72</u>	17 (13) (1) <u>3</u>	120 (31) (14) <u>75</u>	18 (11) (1) <u>6</u>	96 (5) (14) 77	114 (16) (15) <u>83</u>
TOTAL DRIVEWAY TRIPS										7.601	190	296	486	314	265	579
TOTAL PROJECT EXTERNAL VEHICLE	TRIPS									7,457	186	292	478	307	260	567
EXISTING USE CREDIT																
General Light Industrial Net External Vehicle Trips TOTAL EXISTING USE CREDIT	110	313.96 ksf	[g]	[g]	88%	12%	[g]	13%	87%	1,248 1,248 1,248	92 <u>92</u> 92	12 <u>12</u> 12	104 104 104	11 <u>11</u> 11	70 <u>70</u> 70	81 <u>81</u> 81
NET INCREMENTAL EXTERNAL TRIPS	-									6,209	94	280	374	296	190	486

Notes:

- [a] Source: Institute of Transportation Engineers (ITE), Trip Generation, 10th Edition , 2017.
- [b] ITE Multifamily Housing (Mid-Rise) trip generation equations used rather than linear trip generation rate:
 - Daily: T = 5.45*A 1.75, where T = trips, A = area in ksf (Suburban/Urban rate used)
 - AM Peak Hour: Ln(T) = 0.98*LN(A) 0.98, where T = trips, A = area in ksf (Suburban/Urban equation used)
 - PM Peak Hour: $Ln(T) = 0.96 \times LN(A) 0.63$, where T = trips, A = area in ksf (Suburban/Urban equation used)
- [c] Internal capture represents the percentage of trips between land uses that occur within the site. Transportation Research Board (TRB) National Cooperative Highway Research Program (NCHRP) Report 684: Enhancing Internal Trip Capture Estimation for Mixed-Use Developments, 2011. The daily credit is assumed to be 75% of peak hour credits taken.
- [d] The transit, walk, and bike credit is based on the development's proximity to the Duarte Gold Line Station and Duarte's Central Business District.
- [e] The pass-by credit is based on Trip Generation Handbook: An ITE Recommended Practice , 2003.
- [f] ITE Office trip generation equations used rather than linear trip generation rate:
- Daily: Ln(T) = 0.97 Ln(A) + 2.50, where T = trips, A = area in ksf (Suburban/Urban equation used)
- AM Peak Hour: T = 0.94(A) + 26.49, where T = trips, A = area in ksf (Suburban/Urban equation used)
- $PM\ Peak\ Hour: Ln(T) = 0.95\ Ln(A) + 0.36, where\ T = trips, A = area in\ ksf\ (Suburban/Urban\ equation\ used)$
- [g] ITE General Light Industrial trip generation equations used rather than linear trip generation rate:
 - Daily: T = 3.79*A + 57.96, where T = trips, A = area in ksf (Suburban/Urban equation used)
 - AM Peak Hour: $Ln(T) = 0.74 \times Ln(A) + 0.39$, where T = trips, A = area in ksf (Suburban/Urban equation used)
 - PM Peak Hour: Ln(T) = 0.69*Ln(A) + 0.43, where T = trips, A = area in ksf (Suburban/Urban equation used)

PROJECT TRAFFIC ASSIGNMENT

The traffic to be generated by the Project was assigned to the street network using the distribution pattern shown in Figure 6. Appendix C shows assignment of the Project-generated peak hour traffic volumes at the analyzed intersections during the AM and PM peak hours.

EXISTING PLUS PROJECT TRAFFIC PROJECTIONS

The estimated Project traffic was added to the existing traffic volumes to estimate Existing plus Project traffic volumes. Appendix C shows turning movement traffic volumes for the Existing plus Project scenario.

FUTURE TRAFFIC PROJECTIONS

To evaluate the potential impacts of the Project on future buildout (Year 2025) conditions, it was necessary to develop estimates of future traffic conditions in the area both without and with Project traffic. First, estimates of traffic growth were developed for the study area to forecast future conditions without the Project. These forecasts included traffic increases as a result of both regional ambient traffic growth and traffic generated by specific developments in the vicinity of the Project, known as related projects. These projected traffic volumes, identified herein as the future conditions, represent the future study year conditions without the Project. The traffic generated by the Project was then estimated and assigned to the surrounding street system. The Project traffic was added to the future to form the Future plus Project traffic conditions, which were analyzed to determine the incremental traffic impacts attributable to the Project itself.

The assumptions and analysis methodology used to develop each of the future year conditions discussed above are described in more detail in the following sections.

BACKGROUND OR AMBIENT GROWTH

Ambient growth for the study area was developed based on growth factors from the *Congestion Management Program for Los Angeles County* (CMP) (Metro, 2010). The State of California requires that a congestion management program be developed, adopted, and updated biennially for every county that includes an urbanized area and shall include every city and the county government within that county. Metro is designated as the Congestion Management Agency for Los Angeles County and is responsible for the implementation of the CMP. The CMP was approved in October 2010 and serves as a resource for future growth factors within the 21 Regional Statistical Areas (RSA) of Los Angeles County. The growth rate factors

for the RSA of Duarte was used to determine yearly growth rates of the future traffic. A growth rate of 0.46% per year for the Duarte RSA was used for the development of the future year scenario, equaling a total growth of 3.2% between 2018 and 2025.

RELATED PROJECTS

Future traffic forecasts include the effects of specific projects, called related projects, expected to be implemented in the vicinity of the proposed Project site prior to the buildout date of the proposed Project. The list of related projects was prepared based on data from the City of Duarte and surrounding cities. A total of 10 cumulative projects were identified in the study area; these projects are listed in Table 7 and illustrated in Figure 7.

Trip Generation

Trip generation estimates for the related projects were calculated using a combination of previous study findings, publicly available environmental documentation, and the trip generation rates contained in *Trip Generation*, *10th Edition* (Institute of Transportation Engineers [ITE], 2017). Table 7 presents the resulting trip generation estimates for these related projects. These projections are conservative in that they do not, in every case, account for either the existing uses to be removed or the possible use of non-motorized travel modes (transit, walking, etc.).

Trip Distribution

The geographic distribution of the traffic generated by the related projects is dependent on several factors. These factors include the type and density of the proposed land uses, the geographic distribution of population from which employees and potential patrons of proposed commercial developments may be drawn, the locations of employment and commercial centers to which residents of residential projects may be drawn, and the location of the projects in relation to the surrounding street system.

Traffic Assignment

Using the estimated trip generation and trip distribution patterns described above, traffic generated by the related projects was assigned to the street network.

TABLE 7 DUARTE STATION SPECIFIC PLAN RELATED PROJECTS


					Estimated Trip Generation										
No.	Project Location[a]	Land Use	Si	ze	Daily	AM	Peak Hour	Trips	PM	Peak Hour	Trips				
					Trips	ln	Out	Total	In	Out	Total				
		Apartments	18	units											
1	1634 Third St. and 1101 Oak Ave.	Townhomes	2	units	138	2	7	9	7	4	11				
		Third Street Park (Existing)	-15.681	ksf											
2	1122	Fast Food Restaurant with drive-thru	5.175	ksf	636	28	26	54	36	33	69				
2	1122 Huntington Drive	Fast Food Restaurant with drive-thru (Existing)	-3.825	ksf	636	28	26	54	36	33	69				
3	2632 Royal Oaks Drive [b][c]	Religious Institution	3.683	ksf	26	1	0	1	1	1	2				
4	946-962 Huntington Drive	Townhomes	25	units	236	5	14	19	16	9	25				
		Mid-Rise Apartments	161	units											
5	1405-37 Huntington Drive	Commercial	3.5	ksf	1,087	63	45	108	53	39	92				
	_	Live/Work Space[d]	2.1	ksf											
		Apartments	800	du											
6	1200 Huntington Drive	Commercial	703	ksf	3,150	155	160	315	538	378	916				
		Hotel	450	rooms											
7	City of Hope Specific Plan [e]	Hospital	2,945	people	4,753	448	66	514	74	388	462				
8	1193 Huntington Drive[f]	Gym	15.862	ksf	547	11	10	21	31	24	55				
9	1525 Huntington Drive	Restaurant	6.702	ksf	2,112	9	5	14	52	43	95				
10	928 Huntington Drive	Apartments	22	units	161	2	8	10	8	0	8				
	-	•		Total	12,846	724	341	1,065	816	919	1,735				

Note:

ksf = one thousand square feet

A listing of proposed development projects were requested from the City of Duarte and surrounding municipalities in December 2018.

- [a] Trip generation estimates based on rates found from *Trip Generation*, 10th Edition, Institute of Transportation Engineers, 2017.
- [b] Square footage of the project site estimated based on project aerial view through google imagery.
- [c] ITE trip generation rates for church used for meditation temple.
- [d] ITE trip generation rates for commercial used for live/work space.
- [e] Trip Generation Estimates provided in Traffic Impact Analysis City of Hope, April 2017
- [f] Daily ITE rate was not available. Daily rate was estimated by multiplying PM peak hour rate by 10.

(#) Related Projects

⊢ Rail

Project Site Boundary

Metro Rail Station

FUTURE BASE TRAFFIC VOLUMES

Appendix C illustrates the future year 2025 weekday AM and PM peak hour traffic volumes for the analyzed intersections. The future traffic conditions represent an estimate of future conditions without the Project.

FUTURE PLUS PROJECT TRAFFIC PROJECTIONS

The Project traffic volumes were added to the year 2025 future traffic projections, resulting in Future plus Project AM and PM peak hour traffic volumes. Illustrated in Appendix C, the Future plus Project scenario presents future traffic conditions with the completion of the proposed Project.

4. INTERSECTION TRAFFIC IMPACT ANALYSIS

The traffic impact analysis compares the projected LOS at each study intersection under the Existing plus Project conditions and under the Future and Future plus Project conditions to estimate the incremental increase in the V/C ratio or delay caused by the Project. This provides the information needed to assess the potential impact of the Project using significance criteria established by the City of Duarte.

CRITERIA FOR DETERMINATION OF SIGNIFICANT TRAFFIC IMPACT

The 18 study intersections are located within the City of Duarte. Significance criteria established by the City of Duarte was used to assess the potential for significant Project impacts at the study intersections.

Signalized Intersections

The following thresholds of significance for the incremental increase in the V/C ratio was used to assess significant transportation impacts at the signalized intersections located fully or partially within the City of Duarte. The significance of the Project's incremental increase in the V/C ratio is dependent upon the underlying LOS value for that specific peak hour based on the following thresholds:

LOS	Final V/C Ratio	Project Related Increase in V/C
E or F	> 0.901	equal to or greater than 0.020

Unsignalized Intersections

The following factors were used to assess significant transportation impacts at the unsignalized intersections in the City of Duarte. The results represent the HCM unsignalized LOS:

- The intersection is projected to decline to LOS E or F from LOS D or better with the addition of traffic volumes associated with the proposed Project; and
- The intersection meets signal warrants either caused by Project volumes, or Project volumes are added at an intersection that meets signal warrants in the baseline scenario(s).

Signal warrants are volume-based thresholds to determine whether a signal would be recommended, as determined in the *California Manual on Uniform Traffic Control Devices*, also known as MUTCD 2014 (Caltrans, 2014). The peak hour signal warrant test was used for the analysis. The warrant for a traffic signal is met if a plotted point representing the vehicles per hour on the major street (for both approaches) and the corresponding vehicles per hour on the higher-volume minor-street approach (one direction only) for

one hour lies above the applicable curve in Figure 4C-3 in MUTCD 2014 for the combination of approach lanes. If the combined volume of the major approaches and the corresponding conflicting volumes are greater than the threshold determined by the intersection configuration, then a traffic signal could be warranted.

EXISTING PLUS PROJECT IMPACT ANALYSIS

EXISTING PLUS PROJECT TRAFFIC LEVEL OF SERVICE

Existing plus Project traffic volumes, presented in Appendix C, were analyzed to determine the projected V/C ratio or delay, and LOS for each study intersection. Table 8A and Table 8B summarize the Existing plus Project LOS for signalized and unsignalized study intersections. The following three signalized study intersections analyzed operate at LOS E or worse during one or both peak hours under this scenario:

- 2. Mountain Avenue & Evergreen Avenue (PM peak hour)
- 9. Buena Vista Street & Duarte Road (PM peak hour)
- 18. I-605/Mount Olive Drive & Huntington Drive (AM/PM peak hour)

The following three unsignalized study intersections analyzed operate at LOS E or worse during one or both peak hours under this scenario:

- 10. I-210 Westbound off-ramp & Central Avenue (AM/PM peak hour)
- 11. Village Road & Duarte Road (AM/PM peak hour)
- 16. Highland Avenue & Evergreen Street (PM peak hour)

EXISTING PLUS PROJECT INTERSECTION IMPACTS

As presented in Table 8A and Table 8B, after applying the aforementioned significant impact criteria, it was determined that the Project would significantly impact traffic at the following signalized study intersection under the Existing plus Project scenario:

9. Buena Vista Street & Duarte Road (PM peak hour)

The Project would significantly impact traffic at the following two unsignalized study intersections under the Existing plus Project scenario:

- 10. I-210 Westbound off-ramp & Central Avenue (AM peak hour)
- 11. Village Road & Duarte Road (PM peak hour)

TABLE 8A DUARTE STATION SPECIFIC PLAN EXISTING YEAR (2018) PLUS PROJECT INTERSECTION LEVELS OF SERVICE AND IMPACT ANALYSIS SIGNALIZED STUDY INTERSECTIONS

NO.	INTERSECTION	PEAK	EXISTIN	G (2018)	EXISTING	+ PROJECT	V/C INCREASE	SIGNIFICANT
		HOUR	V/C	LOS	V/C	LOS		IMPACT?
1	Mountain Ave & Central Ave	AM	0.771	С	0.772	С	0.001	No
		PM	0.761	С	0.765	С	0.004	No
2	Mountain Ave & Evergreen Ave	AM	0.652	В	0.656	В	0.004	No
		PM	0.959	E	0.967	E	0.008	No
3	Mountain Ave & Duarte Rd	AM	0.600	Α	0.614	В	0.014	No
[a]		PM	0.678	В	0.673	В	-0.005	No
4	Buena Vista St & Huntington Dr	AM	0.691	В	0.695	В	0.004	No
		PM	0.787	С	0.794	С	0.007	No
5	Buena Vista St & Central Ave	AM	0.556	Α	0.578	Α	0.022	No
		PM	0.613	В	0.629	В	0.016	No
6	Buena Vista St & I-210 WB On-ramp	AM	0.390	Α	0.412	Α	0.022	No
	·	PM	0.524	Α	0.539	Α	0.015	No
7	Buena Vista St & Evergreen St/I-210 EB On-ramp	AM	0.597	Α	0.623	В	0.026	No
		PM	0.595	Α	0.607	В	0.012	No
9	Buena Vista St & Duarte Rd	AM	0.808	D	0.838	D	0.030	No
		PM	0.920	E	0.967	E	0.047	Yes
13	Hope Dr & Duarte Rd	AM	0.330	Α	0.343	Α	0.013	No
		PM	0.415	Α	0.449	Α	0.034	No
14	Highland Ave & Huntington Dr	AM	0.552	Α	0.584	Α	0.032	No
		PM	0.821	D	0.893	D	0.072	No
15	Highland Ave & Central Ave	AM	0.565	Α	0.599	Α	0.034	No
		PM	0.763	С	0.783	С	0.020	No
17	Highland Ave & Business Center Dr	AM	0.346	Α	0.439	Α	0.093	No
		PM	0.433	Α	0.487	Α	0.054	No
18	I-605/Mt Olive Dr & Huntington Dr	AM	0.891	D	0.901	E	0.010	No
		PM	1.096	F	1.115 F		0.019	No

Notes:

[a] In ICU Methodology, the southbound left and westbound right overlap are related. For intersection #3, westbound right is the critical move in the plus project scenario. Increasing southbound left turning vehicles increases the capacity for westbound right turning vehicles, decreasing the overall V/C for this intersection even with the addition of project related trips.

TABLE 8B DUARTE STATION SPECIFIC PLAN EXISTING YEAR (2018) PLUS PROJECT INTERSECTION LEVELS OF SERVICE AND IMPACT ANALYSIS UNSIGNALIZED STUDY INTERSECTIONS

NO.	INTERSECTION	PEAK HOUR	EXIST	ΓING	EXISTING	+ PROJECT	DELAY INCREASE	SIGNIFICANT IMPACT?
		HOUK	Delay (s)	LOS	Delay (s)	LOS	INCREASE	IIVIPACI
8	Buena Vista St & 3 Ranch Rd	AM	18.9	С	23.4	С	4.5	No
		PM	22.5	С	28.4	D	5.9	No
10	I-210 WB Off-ramp & Central Ave	AM	94.4	F	112.7	F	18.3	Yes
		PM	94.9	F	101.6	F	6.7	No
11	Village Rd & Duarte Rd	AM	49.1	E	63.2	F	14.1	No
		PM	44.3	E	85.8	F	41.5	Yes
12	Duncannon Ave & Evergreen St	AM	7.8	Α	7.9	А	0.1	No
		PM	7.5	Α	7.7	Α	0.2	No
16	Highland Ave & Evergreen St	AM	24.3	С	31.8	D	7.5	No
		PM			36.9	E	14.9	No

Notes:

Worst approach delay reported for Two-Way Stop Controlled intersections.

FUTURE PLUS PROJECT IMPACT ANALYSIS

FUTURE TRAFFIC CONDITIONS

The year 2025 future peak hour traffic volumes were analyzed to determine the projected V/C ratio or delay, and LOS for each study intersection. Table 9A and Table 9B summarize the Future plus Project LOS for signalized and unsignalized intersections respectively. The following five signalized study intersections analyzed operate at LOS E or worse during one or both peak hours under this scenario:

- 1. Mountain Avenue & Central Avenue (PM peak hour)
- 2. Mountain Avenue & Evergreen Avenue (PM peak hour)
- 9. Buena Vista Street & Duarte Road (AM/PM peak hour)
- 14. Highland Avenue & Huntington Drive (PM peak hour)
- 18. I-605/Mount Olive Drive & Huntington Drive (AM/PM peak hour)

The following three unsignalized study intersections analyzed operate at LOS E or worse during one or both peak hours under this scenario:

- 8. Buena Vista Street & 3 Ranch Road (PM peak hour)
- 10. I-210 Westbound off-ramp & Central Avenue (AM/PM peak hour)
- 11. Village Road & Duarte Road (AM/PM peak hour)

FUTURE PLUS PROJECT TRAFFIC CONDITIONS

The resulting Future plus Project peak hour traffic volumes, illustrated in Appendix C, were analyzed to determine the projected future operating conditions with the addition of the Project traffic. The results of the Future plus Project analysis are presented in Table 9A and Table 9B. The following five signalized intersections are projected to operate at LOS E or worse during one or both of the peak hours with the addition of Project traffic:

- 1. Mountain Avenue & Central Avenue (PM peak hour)
- 2. Mountain Avenue & Evergreen Avenue (PM peak hour)
- 9. Buena Vista Street & Duarte Road (AM/PM peak hour)
- 14. Highland Avenue & Huntington Drive (PM peak hour)

18. I-605/Mount Olive Drive & Huntington Drive (AM/PM peak hour)

The following four unsignalized study intersections analyzed operate at LOS E or worse during one or both peak hours under this scenario:

- 8. Buena Vista Street & 3 Ranch Road (AM/PM peak hour)
- 10. I-210 Westbound off-ramp & Central Avenue (AM/PM peak hour)
- 11. Village Road & Duarte Road (AM/PM peak hour)
- 16. Highland Avenue & Evergreen Street (AM/PM peak hour)

FUTURE PLUS PROJECT INTERSECTION IMPACTS

As presented in Table 9A, after applying the aforementioned significant impact criteria, it was determined that the Project would significantly impact traffic at the following two signalized study intersections under the Future plus Project scenario:

- 9. Buena Vista Street & Duarte Road (AM/PM peak hour)
- 14. Highland Avenue & Huntington Drive (PM peak hour)

As presented in Table 9B, after applying the aforementioned significant impact criteria, it was determined that the Project would significantly impact traffic at the following two unsignalized study intersections under the Future plus Project scenario:

- 10. I-210 Westbound off-ramp & Central Avenue (AM/PM peak hour)
- 11. Village Road & Duarte Road (PM peak hour)

TABLE 9A DUARTE STATION SPECIFIC PLAN FUTURE YEAR (2025) PLUS PROJECT INTERSECTION LEVELS OF SERVICE AND IMPACT ANALYSIS SIGNALIZED STUDY INTERSECTIONS

NO.	INTERSECTION	PEAK HOUR	FUTURE	(2025)	FUTURE +	- PROJECT	V/C INCREASE	SIGNIFICANT
		HOUR	V/C	LOS	V/C	LOS		IMPACT?
1	Mountain Ave & Central Ave	AM	0.843	D	0.845	D	0.002	No
		PM	0.950	E	0.955	E	0.005	No
2	Mountain Ave & Evergreen Ave	AM	0.720	С	0.724	С	0.004	No
		PM	1.069	F	1.078	F	0.009	No
3	Mountain Ave & Duarte Rd	AM	0.620	В	0.634	В	0.014	No
[a]		PM	0.710	С	0.705	С	-0.005	No
4	Buena Vista St & Huntington Dr	AM	0.740	С	0.745	С	0.005	No
		PM	0.884	D	0.888	D	0.004	No
5	Buena Vista St & Central Ave	AM	0.628	В	0.650	В	0.022	No
		PM	0.669	В	0.684	В	0.015	No
6	Buena Vista St & I-210 WB On-ramp	AM	0.459	Α	0.480	Α	0.021	No
		PM	0.626	В	0.639	В	0.013	No
7	Buena Vista St & Evergreen St/I-210 EB On-ramp	AM	0.656	В	0.689	В	0.033	No
		PM	0.690	В	0.702	С	0.012	No
9	Buena Vista St & Duarte Rd	AM	1.022	F	1.052	F	0.030	Yes
		PM	1.175	F	1.222	F	0.047	Yes
13	Hope Dr & Duarte Rd	AM	0.397	Α	0.409	Α	0.012	No
		PM	0.490	Α	0.525	Α	0.035	No
14	Highland Ave & Huntington Dr	AM	0.612	В	0.643	В	0.031	No
		PM	0.901	E	0.974	E	0.073	Yes
15	Highland Ave & Central Ave	AM	0.598	Α	0.632	В	0.034	No
		PM	0.789	С	0.808	D	0.019	No
17	Highland Ave & Business Center Dr	AM	0.375	Α	0.468	Α	0.093	No
		PM	0.458	Α	0.512	Α	0.054	No
18	I-605/Mt Olive Dr & Huntington Dr	AM	0.957	E	0.968	E	0.011	No
		PM	1.171	F	1.190	F	0.019	No

Notes:

[a] In ICU Methodology, the southbound left and westbound right overlap are related. For intersection #3, westbound right is the critical move in the plus project scenario. Increasing southbound left turning vehicles increases the capacity for westbound right turning vehicles, decreasing the overall V/C for this intersection even with the addition of project related trips.

TABLE 9B DUARTE STATION SPECIFIC PLAN FUTURE YEAR (2025) PLUS PROJECT INTERSECTION LEVELS OF SERVICE AND IMPACT ANALYSIS UNSIGNALIZED STUDY INTERSECTIONS

NO.	INTERSECTION	PEAK	FUTURE	(2025)	FUTURE +	PROJECT	DELAY	SIGNIFICANT IMPACT?	
		HOUR	Delay (s)	LOS	Delay (s)	LOS	INCREASE	IMPACT?	
8	Buena Vista St & 3 Ranch Rd	AM	26.9	D	37.5	E	10.6	No	
		PM	42.7	E	63.4	F	20.7	No	
10	I-210 WB Off-ramp & Central Ave	AM	201.8	F	228.3	F	26.5	Yes	
		PM	159.0	F	168.0	F	9.0	Yes	
11	Village Rd & Duarte Rd	AM	305.9	F	406.8	F	100.9	No	
		PM	238.3	F	367.2	F	128.9	Yes	
12	Duncannon Ave & Evergreen St	AM	7.8	Α	7.9	Α	0.1	No	
		PM	7.5	Α	7.7	Α	0.2	No	
16	Highland Ave & Evergreen St	AM	30.7	D	42.7	E	12.0	No	
		PM	25.0	С	45.1	E	20.1	No	

Notes:

Worst approach delay reported for Two-Way Stop Controlled intersections.

SIGNAL WARRANT ANALYSIS

Traffic volumes and lane configurations, as presented in Appendices B and C, were used to prepare signal warrant analyses at the unsignalized intersections under Existing, Existing plus Project, Future, and Future plus Project conditions. The warrant analyses were conducted in accordance with the procedures described in Chapter 4C of the MUTCD 2014. The warrant for a traffic signal is met if a plotted point representing the vehicles per hour on the major street (for both approaches) and the corresponding vehicles per hour on the higher-volume minor-street approach (one direction only) for one hour lies above the applicable curve in Figure 4C-3 in the MUTCD 2014 for the combination of approach lanes. If the combined volume of the major approaches and the corresponding conflicting volumes are greater than the threshold determined by the intersection configuration, then a traffic signal could be warranted.

As presented in Table 10, the following two intersections meet the signal warrant thresholds under the AM and/or PM peak hours for one of the above conditions:¹

- 10. I-210 Westbound off-ramp & Central Avenue (Existing, Existing plus Project, Future, and Future plus Project conditions)
- 11. Village Road & Duarte Road (Existing, Existing plus Project, Future, and Future plus Project conditions)

Signal warrant worksheets are included in Appendix E.

-

¹ This analysis is intended to examine the general correlation between the planned level of future development and the need to install new traffic signals. It estimates future development-generated traffic compared against a sub-set of the standard traffic signal warrants recommended in the Federal Highway Administration Manual on Uniform Traffic Control Devices and associated State guidelines. This analysis should not serve as the only basis for deciding whether and when to install a signal. To reach such a decision, the full set of warrants should be investigated based on field-measured, rather than forecast, traffic data and a thorough study of traffic and roadway conditions by an experienced engineer. Furthermore, the decision to install a signal should not be based solely upon the warrants, since the installation of signals can lead to certain types of collisions. The responsible state or local agency should undertake regular monitoring of actual traffic conditions and accident data, and timely re-evaluation of the full set of warrants in order to prioritize and program intersections for signalization.

TABLE 10 DUARTE STATION SPECIFIC PLAN SIGNAL WARRANT ANALYSIS

NO.	INTERSECTION	PEAK HOUR	EXISTING	EXISTING PLUS PROJECT	FUTURE BASE	FUTURE PLUS PROJECT
8	Buena Vista St & 3 Ranch Rd	AM	NO	NO	NO	NO
		PM	NO	NO	NO	NO
10	I-210 WB Off-ramp & Central Ave	AM	YES	YES	YES	YES
		PM	NO	YES	YES	YES
11	Village Rd & Duarte Rd	AM	NO	NO	NO	YES
		PM	YES	YES	YES	YES
12	Duncannon Ave & Evergreen St	AM	NO	NO	NO	NO
		PM	NO	NO	NO	NO
16	Highland Ave & Evergreen St	AM	NO	NO	NO	NO
		PM	NO	NO	NO	NO

Notes:

Average vehicular delay reported for worst case approach for unsignalized intersections, that is Two-Way Stop Controlled and Un-controlled intersections.

MITIGATION MEASURES

This section describes the proposed transportation mitigation program for the Project and evaluates effectiveness of the program in mitigating the significant Project impacts described in the previous section. The mitigation program has been developed in discussions with City of Duarte staff, which has approved the approaches, analysis methods, and assumptions used to complete this analysis.

MITIGATION PROGRAM ELEMENTS

The mitigation program for the Project includes specific intersection improvements, including physical mitigations and signal phasing modifications.

PHYSICAL IMPROVEMENTS DETERMINED TO BE FEASIBLE

The following details the measures developed within the existing roadway to mitigate significant Project impacts. To the extent these mitigation measures are not adopted, impacts would remain significant and unavoidable.

10. I-210 Westbound off-ramp & Central Avenue

This intersection is recommended for signalization as a mitigation. The intersection is operating at an LOS F in the AM peak hour and LOS F in the PM peak hour under existing conditions. The intersection meets the peak hour signal warrant. The measure would mitigate the significant Project impact under the Existing plus Project and the Future plus Project conditions. The City of Hope Traffic Study has also identified the signalization of this intersection as a project mitigation.

11. Village Road & Duarte Road

This intersection is recommended for signalization as a mitigation. The intersection is created by a public road and private drive and is operating at an LOS E in the AM peak hour and LOS E in the PM peak hour under existing conditions. The intersection meets the peak hour signal warrant. The measure would mitigate the significant Project impact under the Existing plus Project and Future plus Project conditions. The City of Hope Traffic Study has also identified the signalization of this intersection as a project mitigation.

14. Highland Avenue & Huntington Drive

A mitigation measure was analyzed involving a modification to the northbound approach and southbound approach signal on Highland Avenue by adding an overlap phase for both right-turn

approaches. This mitigation will require a modification to the lane geometry through the striping of a northbound and southbound right-turn lane. The mitigation would reduce the intersection impact to a less-than-significant level under Future plus Project conditions.

MITIGATION MEASURES EVALUATED BUT NOT RECOMMENDED

Provided below is a discussion of physical measures that were explored, but due to physical constraints or potential secondary impacts, the identified mitigation measure was determined to be infeasible. However, this summary provides the opportunity for further public input on potential improvements that were explored:

9. Buena Vista Street & Duarte Road

A mitigation measure was analyzed involving a modification to the northbound approach on Buena Vista Street to add a right-turn lane. This mitigation would require the widening of the northbound leg to accommodate the additional lane. The mitigation would reduce the intersection impact to a less-than-significant level. The mitigation is not recommended, due to the need to modify the of the right-of-way, which contains the Metro Gold Line tracks to the north and private property to the south.

SUMMARY OF SIGNIFICANT IMPACTS AFTER PROPOSED MITIGATION MEASURES

Table 11 and Table 12 show LOS and significant impact analysis results after the implementation of the mitigation measures under existing and future conditions described in the previous section. As presented in Tables 8A-9B, the Project was determined to significantly impact traffic at three intersections under Existing plus Project conditions and four intersections under Future plus Project conditions prior to mitigation.

After applying the aforementioned mitigation measures, significant and unavoidable traffic impacts are projected to remain at the one following intersection:

9. Buena Vista Street & Duarte Road

TABLE 11 DUARTE STATION SPECIFIC PLAN EXISTING YEAR (2018) PLUS PROJECT INTERSECTION LEVELS OF SERVICE AND IMPACT ANALYSIS - MITIGATIONS

NO.	INTERSECTION	HOUR		EXISTING	+ PROJECT	EXISTING (MITIG	+ PROJECT ATION)	V/C INCREASE	SIGNIFICANT	
		HOUK	V/C	LOS	V/C	LOS	V/C	LOS		IMPACT?
9	Buena Vista St & Duarte Rd	AM	0.808	D	0.838	D	0.838	D	0.030	No
		PM	0.920	0.920 E		E	0.967 E		0.047	Yes
10	I-210 WB Off-ramp & Central Ave	AM	0.616	В			0.651	В	0.035	No
		PM	0.567	Α			0.585	Α	0.018	No
11	Village Rd & Duarte Rd	AM	0.484	Α			0.494	A	0.010	No
		PM	0.438	Α			0.470 A		0.032	No

TABLE 12
DUARTE STATION SPECIFIC PLAN
FUTURE YEAR (2025) PLUS PROJECT INTERSECTION LEVELS OF SERVICE AND IMPACT ANALYSIS - MITIGATIONS

NO.	INTERSECTION	PEAK	FUTURE	(2025)	FUTURE +	PROJECT	FUTURE + (MITIG		V/C INCREASE	SIGNIFICANT
		HOUR	V/C	LOS	V/C	LOS	V/C	LOS		IMPACT?
9	Buena Vista St & Duarte Rd	AM	1.022	F	1.052	F	1.052	F	0.030	Yes
		PM	1.175	F	1.222 F		1.222 F		0.047	Yes
10	I-210 WB Off-ramp & Central Ave	AM	0.659	В				0.686 B		No
		PM	0.600	Α			0.618	В	0.018	No
11	Village Rd & Duarte Rd	AM	0.610	В			0.620	В	0.010	No
		PM	0.545	Α			0.577	Α	0.032	No
14	Highland Ave & Huntington Dr	AM	0.612	В	0.643 B		0.643	В	0.031	No
		PM	0.901	E	0.974	0.974 E		D	-0.010	No

5. REGIONAL TRANSPORTATION SYSTEM IMPACT ANALYSIS

This section presents an analysis of potential impacts on the regional transportation system. This analysis was conducted in accordance with the procedures outlined in *Congestion Management Program for Los Angeles County* (CMP) (Metro, 2010). The CMP requires that, when an environmental impact report is prepared for a project, traffic and public transit impact analyses be conducted for select regional facilities based on the quantity of project traffic expected to use those facilities.

CMP REGIONAL TRAFFIC IMPACT ANALYSIS

The CMP guidelines require that the first issue to be addressed is the determination of the geographic scope of the Study Area. The criteria for determining the study area for CMP arterial monitoring intersections and for freeway monitoring locations are:

- All CMP arterial monitoring intersections where the proposed Project will add 50 or more trips during either the AM or PM peak hours of adjacent street traffic.
- All CMP mainline freeway monitoring locations where the proposed Project will add 150 or more trips, in either direction, during either the AM or PM peak hours.

SIGNIFICANT TRAFFIC IMPACT CRITERIA

The CMP traffic impact analysis guidelines establish that a significant project impact occurs when the following threshold is exceeded:

 The proposed project increases traffic demand on a CMP facility by 2% of capacity (V/C ≥ 0.02), causing LOS F (V/C > 1.00)

If the facility is already at LOS F, a significant impact occurs when the proposed project increases traffic demand on a CMP facility by 2% of capacity ($V/C \ge 0.02$).

ARTERIAL MONITORING STATIONS

The closest CMP arterial monitoring station, the intersection of Azusa Avenue & Foothill Boulevard, is approximately 4.3 miles from the Project site. The Project is not expected to add 50 or more vehicle trips during the AM or PM peak hours in the eastbound and westbound directions at any of the study intersections in the northeastern boundary of the Study Area, much closer to the Project site. Therefore, the

Project would not add more than 50 trips to the intersection of Azusa Avenue & Foothill Boulevard farther east, and no further arterial review using CMP criteria is required.

FREEWAYS

The CMP mainline freeway monitoring stations closest to the Project site are I-210 at Highland Avenue and I-605 at Rivergrade Road. According to the trip generation estimates presented in Table 6 and trip distribution estimates presented in Figure 6, the Project is projected to result in an increase of fewer than 150 trips in each direction for both the AM and PM peak hours at both of these locations. No further analysis of the freeway segments is required for CMP purposes.

CMP REGIONAL PUBLIC TRANSIT IMPACT ANALYSIS

Appendix C-8 of the 2010 CMP provides a methodology for estimating the number of transit trips expected to result from a proposed project based on the projected number of vehicle trips. This methodology assumes an average vehicle ridership (AVR) factor of 1.4 in order to estimate the number of person trips to and from a project and then provides guidance regarding the percentage of person trips assigned to public transit depending on the type of use (commercial/other versus residential) and the proximity to transit services. Appendix C-8 of the 2010 CMP recommends summarizing the fixed-route local bus services within 1/4-mile of the Project site and express bus routes and rail service within two miles of the Project site.

Within ¼-mile of the Project site, Metro operates one local bus line and one light-rail line; Foothill transit operates two local lines; and Duarte Transit operates two local routes. There is no additional high-quality transit services within two miles of the Project site.

As part of the trip generation estimates presented in Table 6, a transit credit of 15% was taken for the Project. This credit accounts for trips made to and from the Project site using transit. The 15% transit credit is estimated to reduce Project-generated trips by 87 vehicle trips during the AM peak hour and 101 during the PM peak hour on weekdays. Applying the AVR factor of 1.4, the Project would generate an estimated 122 transit riders in the AM peak hour and an estimated 142 transit riders in the PM peak hour.

The Project location is well served by numerous established local and regional transit routes; therefore, Project-related transit impacts are not expected to be significant. The headway service for local routes is assumed to operate with 20 minutes during peak hours. The headway service for local routes are between 15 and 60 minutes during both peak periods, as seen in Table 2. Metro Gold Line operates with a 7-minute headway during peak periods. An AM and PM capacity was determined based on the AM and PM peak period headways and seating capacities of the various transit types. With a total estimated transit seating

capacity of approximately 8,155 persons in the peak hour, the Project's estimated transit riders of 122 in the AM peak hour and 142 in the PM peak hour would utilize approximately 1.5% of available transit capacity during the AM peak hour and 1.7% during the PM peak hour. This is not considered a significant public transit impact.

6. VEHICLES MILES TRAVELED ANALYSIS

On September 27, 2013, Governor Jerry Brown signed Senate Bill (SB) 743 into law and started a process that will fundamentally change transportation impact analysis conducted as part of California Environmental Quality Act (CEQA) compliance. The Governor's Office of Planning and Research (OPR) was charged with developing new guidelines for evaluating transportation impacts under CEQA using methods that no longer focus on measuring automobile delay and level of service (LOS). This change at the state level recognizes the unintended consequences of using LOS as an impact metric, which results in understating potential transportation impacts in greenfield areas and discouraging more sustainable infill projects and alternative transportation projects. SB 743 directed agencies to create new guidelines that develop a transportation performance metric promoting: the reduction of greenhouse gas emissions, the development of multimodal networks, and a more sustainable diversity of land uses.

OPR issued proposed updates to the CEQA guidelines in support of these goals in November 2017 and a supporting technical advisory in December 2018.² The updates establish vehicle miles traveled (VMT) as the primary metric for evaluating a project's environmental impacts on the transportation system. The changes to CEQA guidelines Section 15064.3 to implement SB 743 were certified by the State in December of 2018. Lead agencies have until July 1, 2020 to implement these new requirements. As the City of Duarte has not yet adopted new traffic impact study guidelines including the VMT metric and significance in compliance with SB 743 guidelines, the analyses below were conducted for informational purposes only.

AVERAGE TRIP LENGTH EVALUATION

To evaluate total VMT for the Project, the VMT analysis utilized trip distances as determined by the Southern California Association of Government's (SCAG) travel demand model. The vehicle trip length for the Duarte transportation analysis zone (TAZ) was obtained from the SCAG 2016 Regional Transportation Plan (RTP) Travel Demand Model.³ The SCAG travel demand model identifies trip distances as Home-Based Work (HBW) and Home-Based Other (HBO), where trips have been produced by residential land uses and trips have been attracted by non-residential land uses. The other trip type, Non Home-Based (NHB), is produced and attracted by non-residential land uses. To determine the average trip length of the residential component of the Project, the average lengths of production trips in HBW and HBO were identified. To

² State of California, Governor's Office of Planning and Research, *Technical Advisory on Evaluating Transportation Impacts in CEQA*, December 2018.

³ The SCAG 2016 Regional Transportation Plan (RTP) was the most current RTP available from SCAG at the time of issuance of Notice of Preparation (NOP) and modeling prepared for the transportation analysis presented in this traffic study.

determine average trip length for the office component of the Project, average HBW trip distances from attraction trips were selected. The Duarte TAZ in the 2016 SCAG travel demand model identifies the average trip length for residential land uses as 15.8 miles for HBW trips and 8.1 miles for HBO trips, and the average trip length for office land uses for HBW trips as 17.7 miles.

TRIP GENERATION DETERMINATION

As seen in Table 6, the Project is expected to generate an estimated 6,289 net new daily residential trips and 767 net new daily worker trips. OPR advices that for residential projects, the focus of VMT calculations should be on Home-Based trips and for office projects the focus should be on Home-Based Work trips. These are the only trip types that need to be analyzed for VMT purposes.⁴ NCHRP⁵ guidelines estimate that of a Project's total trips, 15% of the residential trips are HBW and 50% of the residential trips are HBO. It estimates that 35% of the office trips are HBW. These factors were applied to the daily trip generation estimates in Table 6 to identify the number of residential HBW and HBO trips and office HBW trips. For residential land uses, the number of HBW trips was estimated at 943 trips and the number of HBO trips was estimated at 3,145 trips. For office land uses, the number of HBW trips was estimated at 268 trips. Since CEQA guidance does not require VMT analysis for commercial uses less than 50,000 square feet, daily trips produced by the retail and restaurant land uses have not been included in this analysis.

VMT ESTIMATE

To calculate the daily VMT, the trips for each land use were multiplied by the associated SCAG travel demand model trip distances. Based on the Project's estimated trip generation of 943 HBW residential trips and average resident HBW trip length of 15.8 miles and 3,145 HBO residential trips and average HBO trip length of 8.1 miles, the residential land use generates 40,374 daily VMT. Based on the Project's estimated trip generation of 268 HBW employee trips and average HBW employee trip length of 17.7 miles, the office land use generates 4,744 daily VMT.

SERVICE POPULATION DETERMINATION

To conduct a VMT per capita analysis, a service population for the residential and office land uses was determined. Service populations typically account for residents and employees of a project. Residential land

⁴ Governor's Office of Planning and Research. Technical Advisory on Evaluating Transportation Impacts in CEQA. Page 5.

⁵ National Cooperative Highway Research Program. Report 365: Travel Estimation Techniques for Urban Planning

uses were converted to household population based on conversion rates derived from 2019 Department of Finance data. The average household size of dwelling units based on Department of Finance data is 3.03 people per unit, resulting in an estimated household population generated by the Project of 4,242 residents. Office land uses were converted to employee population based on conversion rates derived the 2016 SCAG Regional Transportation Plan/Sustainable Communities Strategy. The above data source suggests one employee per 280 square feet, resulting in an estimated employee population generated by the Project of 357 employees.

VMT PER CAPITA ESTIMATE

To calculate the VMT per capita at the Project, the daily VMT was divided by the Project's population. For the residential land uses, 40,374 daily VMT was divided by the residential population of 4,242 to result in an estimated 9.5 VMT per resident. For the office land uses, 4,744 daily VMT was divided by an employee population of 357 to result in an estimated 13.3 VMT per employee. Table 13 below summaries the VMT analysis.

TABLE 13 DUARTE STATION SPECIFIC PLAN VEHICLE MILES TRAVELED (VMT) ANALYSIS

	RESIDE	NTIAL	OFFICE
	HBW	НВО	HBW
Trip Length by Land Use (miles) [a]	15.8	17.7	
Project Trip Generation [b]	943	3,145	268
Daily VMT [c]	40,3	374	4,744
Service Population [d]	4,2	.42	357
VMT per Capita/Employee	9.	5	13.3

Notes:

- [a] The Southern California Association of Governments (SCAG) Travel Demand Forecasting Model provides the ability to evaluate the transportation system, use performance indicators for land use and transportation alternatives, provide information on regional pass-through traffic versus locally generated trips, and graphically display these results. The model captures planned growth in the Project Area and is sensitive to emerging land use trends through improved sensitivity to built environment variables. The model forecasts AM and PM peak period and daily vehicle and transit flows on the transportation network in the City and calculates trip origins and destinations for those vehicle flows, ultimately providing the trip lengths utilized here.
- [b] NCHRP estimates 15% of total residential trips to be HBW trip types and 50% of residential trips to be HBO trip types. NCHRP also estimates 35% of total office trips to be HBW trip types. These factors were applied to the daily trip generation estimated in Table 6 to identify the number of residential HBW and HBO trips and office HBW trips.
- [c] Daily VMT for residential and office land uses is calculated using the residential and office trip generation explained in [b] and the average trip length calculated using the SCAG model for each land use.
- [d] VMT per Capita for residential is calculated by converting the residential land use to household population based on conversion rates derived from 2019 Department of Finance data. The average household size of renter occupied units based on Department of Finance data is 3.03 people per dwelling unit. VMT per Capita for office is calculated by converting office land use to population based on conversion rates derived the 2016 SCAG Regional Transportation Plan/Sustainable Communities Strategy. The above data sources suggests one employee per 280 square feet.

7. FREEWAY ANALYSIS

This section presents an analysis of potential effects of the Project on freeway (Caltrans) facilities. This section summarizes the results of the analysis prepared consistent with Caltrans guidance. Two analyses were conducted, which included off-ramp queuing analysis at five off-ramps on the I-210 and I-605 freeways and freeway mainline freeway segment analysis for a series of mainline segments on I-210 and I-605 freeways.

OFF-RAMP QUEUING ANALYSIS

A freeway off-ramp queuing analysis was conducted at five freeway off-ramp locations to determine queuing conditions at the off-ramps as a result of traffic from the Project. Queue lengths were estimated using Synchro, a traffic analysis software package. Each intersection was configured according to its existing (and future, if applicable) arrival conditions, including signal timing and physical geometry. The focus of the queuing analysis is to specifically determine if there is adequate storage capacity at the off-ramps. An impact is considered significant if the off-ramp queue extends beyond 85% of the capacity of the ramp during the AM and PM peak hours.

The queueing analysis was conducted for the following off-ramps:

- 1. I-210 Westbound off-ramp/Central Avenue & Mountain Avenue
- 2. I-210 Eastbound off-ramp/Evergreen Street & Mountain Avenue
- 7. I-210 Eastbound off-ramp/Evergreen Street & Buena Vista Street
- 10. I-210 Westbound off-ramp & Central Avenue
- 18. I-605 ramps/Mount Olive Avenue & Huntington Avenue

Four scenarios were tested for the AM and PM weekday peak hours:

- Existing (Year 2018)
- Existing plus Project
- Future (Year 2025)
- Future plus Project

QUEUING ANALYSIS

Table 14 and Table 15 present a summary of the ramp queuing analysis for all project conditions. The 95th percentile queues were reported for the purposes of this analysis. The freeway ramps queues would not extend beyond 85% of the capacity of the ramp under any existing or future scenarios with the Project. **No significant impact at off-ramp locations is anticipated as a result of the Project.** Detailed queue calculations are provided in Appendix F.

TABLE 14 DUARTE STATION SPECIFC PLAN EXISTING YEAR (2018) PEAK HOUR OFF-RAMP INTERSECTION QUEUES

			Total	ity 85% Ramp	·				Existing	g (2018)		Queue		Existing (20	18) + Projec	t	Queue	
Intersection Number	Ramp	Cross Street	Capacity				namp ram canes at mensection		AM Queue		PM Queue		Exceeds	AM Queue		PM Queue		Exceeds
			(ft) [a]		Lanes	Move	Length [a]		Lane (ft)	Max (ft)	Lane (ft)	Max (ft)	Storage?	Lane (ft)	Max (ft)	Lane (ft)	Max (ft)	Storage?
1	I-210 WB Off-ramp/Central Avenue	Mountain Avenue	3,860	3,281	2	left through	2,360 920	Signal	232 #448	#1128	194 106	406	No	232 #448	#1128	194 109	412	No
1	1-210 WB OII-Tamp/Central Avenue	Wountain Avenue	3,860	5,201	3	through/right	580	Sigilal	#448	#1120	106	406	NO	#448	#1120	109	412	NO
						left	1,470		228		191			228		191		
2	I-210 EB Off-ramp/Evergreen Street	Mountain Avenue	4,560	3,876	4	through through	1,470 1,470	Signal	108 108	489	#538 #538	#1329	No	110 110	493	#551 #551	#1355	No
						right	150		45		62			45		62		
7	I-210 EB Off-ramp/Evergreen Street	Buena Vista Street	5,200	4,420	2	through/left through/right	2,600 2,600	Signal	109 109	218	184 184	368	No	109 109	218	194 194	388	No
10	I-210 WB Off-ramp	Central Avenue	1,450	1,233	2	left right	910 540	Stop	398 80	478	293 30	323	No	438 85	523	315 43	358	No
18	LEGE ramps / Mt Olive Avenue	Huntington Avenue	3,130	2,661	3	left through/left	550	Signal	#655	#1390	262	#911	No	#675	#1453	#351	#1085	No
18	I-605 ramps/Mt Olive Avenue	Huntington Avenue	5,130	2,001	3	right	1,290 1,290	Signal	#654 81	#1390	267 #382	#911	NO	#689 89	#1453	#352 #382	#1085	INO

[[]a] Storage length determined based on scaled distances from on-line aerial photographs.
95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after 2 cycles.

TABLE 15 DUARTE STATION SPECIFC PLAN FUTURE YEAR (2025) PEAK HOUR OFF-RAMP INTERSECTION QUEUES

			Total	85% Ramp	Ram	p Turn Lanes at In	tersection			Future	(2025)		Queue		Future (202	25) + Projec	t	Queue
Intersection Number	Ramp	Cross Street	Capacity	Capacity (ft)				Control	Control AM (PM C	Queue	Exceeds	AM Queue		PM Queue		Exceeds
			(ft) [a]	capacity (it)	Lanes	Move	Length [a]		Lane (ft)		Lane (ft)	Max (ft)	Storage?	Lane (ft)	Max (ft)	Lane (ft)	Max (ft)	Storage?
						left	2,360		240		201			240		201		
1	I-210 WB Off-ramp/Central Avenue	Mountain Avenue	3,860	3,281	3	through	920	Signal	#505	#1250	204	609	No	#505	#1250	206	613	No
						through/right	580		#505		204			#505		206		<u> </u>
						left	1,470		257		258			257		258		
2	I-210 EB Off-ramp/Evergreen Street	Mountain Avenue	4,560	3,876	4	through	1,470	Signal	112	526	#565	#1451	No	114	530	#577	#1476	No
	,, ,,		,	.,		through	1,470		112		#565			114		#577		
						right	150		45		63			45		64		
7	I-210 EB Off-ramp/Evergreen Street	Buena Vista Street	5,200	4,420	2	through/left	2,600	Signal	170	340	209	418	No	175	350	220	440	No
·	. === ==		-,	.,		through/right	2,600	8	170		209			175		220		
10	I-210 WB Off-ramp	Central Avenue	1,450	1,233	2	left	910	Stop	693	788	413	446	No	488	591	440	488	No
10	1210 110 011 101111	central / Wende	1,150	1,233	_	right	540	эсор	95	700	33	110	110	103	331	48	100	
	·					left	550		#766		#375			#800		#465		
18	I-605 ramps/Mt Olive Avenue	Huntington Avenue	3,130	2,661	3	through/left	1,290	Signal	#777	#1653	#388	#1188	No	#800	#1715	#470	#1360	No
						right	1,290		110		#425			115		#425		

[[]a] Storage length determined based on scaled distances from on-line aerial photographs.
95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after 2 cycles.

MAINLINE FREEWAY SEGMENT ANALYSIS

Mainline freeway segment analyses were conducted using the HCM operational analysis methodology as implemented by the Highway Capacity Software (HCS) software package for the following four segments along the I-210 and I-605 in both directions:

- I-210 West of Mountain Avenue
- I-210 Between Buena Vista Street and Highland Avenue
- I-210 East of Mount Olive Drive
- I-605 South of Live Oak Avenue

Per the *Guide for the Preparation of Traffic Impact Studies*, or Caltrans TIS Guide (Caltrans, 2002), Caltrans endeavors to maintain a target LOS at the transition between LOS C and LOS D on State highway facilities; however, Caltrans acknowledges that this may not always be feasible. If an existing State highway facility is operating at less than the appropriate target LOS, the existing measure of effectiveness (MOE) should be maintained (Caltrans TIS Guide, page 1). This latter criterion does not allow for determination of effect if the segment is operating at LOS F under baseline conditions. For informational purposes, freeway segments operating at LOS F under base conditions were identified if the project traffic added to these segments is estimated to represent 2% or more of the total traffic on the segment.

EXISTING AND EXISTING PLUS PROJECT MAINLINE LEVEL OF SERVICE

Freeway mainline volume and speed data were obtained from Caltrans' Performance Measurement System (PeMS) archived traffic data for the AM and PM peak periods for Tuesdays, Wednesdays, and Thursdays in December 2018⁶, and the data was averaged across the days. Existing and Existing plus Project conditions on the mainline segments are presented in Table 16. Detailed LOS calculations are provided in Appendix F.

Level of service was determined using the following definitions from the HCM as presented in Appendix C of the Caltrans TIS Guide (note that LOS F is defined as density exceeding 45 passenger cars per mile per lane and average speed below 52.2 miles per hour):

⁶ Specifically, between December 1-22, except when data was not available for those dates.

LOS DEFINITIONS FOR BASIC FREEWAY SEGMENTS @ 65 MILES/HOUR

Level of Service	Maximum Density	Minimum Speed				
Level of Service	(pc/mi/ln)	(mph)				
А	11	65.0				
В	18	65.0				
С	26	64.6				
D	35	59.7				
E	45	52.2				

For both the Existing and Existing plus Project scenarios during the AM peak hour, I-210 west of Mountain Avenue in the westbound direction and I-605 south of Live Oak Avenue in the southbound direction operate at a congested LOS F. During the PM peak hour, the eastbound segments on I-210 operate at LOS F.

With the Project, all of the segments during the AM peak hour would continue to operate at the same LOS as under Existing conditions. The Project represents between 0.2% and 1.4% of the Existing plus Project traffic volumes on the segments depending on location and direction. **The Project is projected to have no change in the MOE during the AM peak hour under the Existing plus Project scenario.**

With the Project, none of the segments during the PM peak hour would operate at a worse LOS when compared to the Existing condition. The Project represents between 0.5% and 1.9% of the Existing plus Project traffic volumes on the segments depending on location and direction. **The Project is projected to have no change in the MOE during the PM peak hour under the Existing plus Project scenario.**

FUTURE AND FUTURE PLUS PROJECT MAINLINE LEVEL OF SERVICE

Per the Caltrans TIS Guide, future conditions analyzed in conjunction with a project entitlement process should be evaluated for the future year in which the project is anticipated to complete construction (Caltrans TIS Guide, page 3). Future volumes were thus projected for the future traffic conditions (Year 2025) taking into account projected changes in traffic over existing conditions from two primary sources: (1) ambient growth in the existing traffic volumes due to the effects of overall regional growth and development outside the study area, and (2) traffic generated by specific development projects in, or in the vicinity of, the study area. The methods used to account for these factors are described below:

<u>Background or Ambient Growth</u> – Ambient growth for the study area was developed based on growth factors from the Congestion Management Program for Los Angeles County (CMP) (Metro, 2010). The State of California requires that a congestion management program be developed, adopted, and updated biennially for every county that includes an urbanized area and shall include every city and the county government within that county. Metro is designated as the Congestion

Management Agency for Los Angeles County and is responsible for the implementation of the CMP. The CMP was approved in October 2010 and serves as a resource for future growth factors within the 21 Regional Statistical Areas (RSA) of Los Angeles County. The growth rate factors for the RSA area of Duarte was used to determine yearly growth rates of the future traffic. Growth rates of 0.46% per year for the Duarte RSA was used for the development of the future year scenario.

• Related Projects – Future traffic forecasts include the effects of specific projects, called related projects, expected to be implemented in the vicinity of the proposed Project site prior to the buildout date of the proposed Project. The list of related projects was prepared based on data from the City of Duarte. A total of 10 cumulative projects were identified in the study area; these projects are listed in Table 7. Trip generation estimates for the related projects were calculated using a combination of previous study findings, publicly available environmental documentation, and trip generation rates contained in the Institute of Transportation Engineers' trip generation manual. Table 7 presents the trip generation estimates for these related projects. These projections are conservative in that they do not in every case account for either the existing uses to be removed or the possible use of non-motorized travel modes (transit, walking, etc.).

Table 17 presents the future freeway mainline segment analysis. For both the Future and Future plus Project scenarios, during the AM peak hour, I-210 west of Mountain in the westbound direction and I-605 south of Live Oak Avenue in the southbound direction operate at a congested LOS F. During the PM peak hour, the eastbound segments on I-210 operate at LOS F.

With the Project, all of the segments during the AM peak hour would continue to operate at the same LOS as under Future conditions. The Project represents between 0.2% and 1.4% of the Future plus Project traffic volumes on the segments depending on location and direction. **The Project is projected to have no change in the MOE during the AM peak hour under the Future plus Project scenario.**

With the Project, all of the segments during the PM peak hour would continue to operate at the same LOS as under Future conditions. The Project represents between 0.5% and 1.8% of the Future plus Project traffic volumes on the segments depending on location and direction. **The Project is projected to have no change in the MOE during the PM peak hour under the Future plus Project scenario.**

TABLE 16
EXISTING FREEWAY MAINLINE LEVEL OF SERVICE

	AM Peak Hour										
				Existing		Project	Existing Plus Project			Project %	Project Change
Location	Fwy Segment Name	Dir	Volume	LOS	Density	Volume	Volume	LOS	Density	of Total	in MOE
1	I-210 w/o Mountain	EB	6,137	D	26.2	24	6,161	D	26.3	0.4%	No
		WB	4,831	F	-	70	4,901	F	-	1.4%	No
2	I-210 between Buena Vista and Highland	EB	4,974	С	20.9	48	5,022	С	21.1	1.0%	No
		WB	4,948	С	20.8	31	4,979	С	20.9	0.6%	No
3	I-210 e/o Mt Olive	EB	7,015	С	23.6	42	7,057	C	23.8	0.6%	No
		WB	6,648	С	22.3	14	6,662	C	22.4	0.2%	No
4	I-605 s/o Live Oak	NB	5,161	С	21.6	24	5,185	С	21.7	0.5%	No
		SB	6,065	F	-	70	6,135	F	-	1.1%	No

	PM Peak Hour										
				Existing		Project	Existi	ng Plus Pi	roject	Project %	Project Change
Location	Fwy Segment Name	Dir	Volume	LOS	Density	Volume	Volume	LOS	Density	of Total	in MOE
1	I-210 w/o Mountain	EB	3,751	F	-	74	3,825	F	-	1.9%	No
		WB	5,765	С	24.3	48	5,813	С	24.6	0.8%	No
2	I-210 between Buena Vista and Highland	EB	4,266	F	-	47	4,313	F	-	1.1%	No
		WB	4,616	C	19.4	56	4,672	C	19.6	1.2%	No
3	I-210 e/o Mt Olive	EB	5,586	F	-	29	5,615	F	-	0.5%	No
		WB	5,851	C	19.6	45	5,896	C	19.8	0.8%	No
4	I-605 s/o Live Oak	NB	4,854	С	20.4	74	4,928	C	20.7	1.5%	No
		SB	5,929	C	25.1	48	5,977	C	25.4	0.8%	No

Note

Locations operating at an average speed < 52.2 mph are defined as LOS F by the Highway Capacity Manual per the Caltrans Guide for the Preparation of Traffic Impact Studies (Dec 2002).

Density is not provided at LOS F locations as density results are not refelective of operations at location.

TABLE 17
FUTURE FREEWAY MAINLINE LEVEL OF SERVICE

	AM Peak Hour										
				Future		Project	Future Plus Project			Project %	Project Change
Location	Fwy Segment Name	Dir	Volume	LOS	Density	Volume	Volume	LOS	Density	of Total	in MOE
1	I-210 w/o Mountain	EB	6,489	D	28.0	24	6,513	D	28.2	0.4%	No
		WB	5,045	F	-	70	5,115	F	-	1.4%	No
2	I-210 between Buena Vista and Highland	EB	5,214	С	21.9	48	5,262	С	22.1	0.9%	No
		WB	5,256	C	22.1	31	5,287	С	22.2	0.6%	No
3	I-210 e/o Mt Olive	EB	7,298	C	24.7	42	7,340	C	24.8	0.6%	No
		WB	6,979	С	23.5	14	6,993	С	23.5	0.2%	No
4	I-605 s/o Live Oak	NB	5,521	C	23.2	24	5,545	С	23.3	0.4%	No
		SB	6,338	F	-	70	6,408	F	-	1.1%	No

	PM Peak Hour										
				Future		Project	Future Plus Project			Project %	Project Change
Location	Fwy Segment Name	Dir	Volume	LOS	Density	Volume	Volume	LOS	Density	of Total	in MOE
1	I-210 w/o Mountain	EB	3,994	F	-	74	4,068	F	-	1.8%	No
		WB	6,126	D	26.1	48	6,174	D	26.4	0.8%	No
2	I-210 between Buena Vista and Highland	EB	4,623	F	-	47	4,670	F	-	1.0%	No
		WB	4,967	C	20.8	56	5,023	С	21.1	1.1%	No
3	I-210 e/o Mt Olive	EB	5,916	F	-	29	5,945	F	-	0.5%	No
		WB	6,175	C	20.7	45	6,220	С	20.9	0.7%	No
4	I-605 s/o Live Oak	NB	5,186	С	21.8	74	5,260	С	22.1	1.4%	No
		SB	6,351	D	27.3	48	6,399	D	27.5	0.8%	No

Note

Locations operating at an average speed < 52.2 mph are defined as LOS F by the Highway Capacity Manual per the Caltrans Guide for the Preparation of Traffic Impact Studies (Dec 2002).

Density is not provided at LOS F locations as density results are not refelective of operations at location.

8. SUMMARY AND CONCLUSIONS

This study was undertaken to analyze the potential traffic impacts of the proposed Duarte Station Specific Plan in the City of Duarte. The following summarizes the results of this analysis:

- The Project involves the construction of up to 1,400 multi-family mid-rise residential dwelling units, 6,250 square feet of retail uses, 6,250 square feet of high turnover (sit-down) restaurant uses, and 100,000 square feet of office space.
- Vehicle access to the Project site will be provided off of Highland Avenue, Business Center Drive, and Evergreen Street.
- The study includes the analysis of 18 intersections, of which 13 intersections operate under signal control and the remaining five intersections are stop-controlled. The ICU methodology was used for signalized intersections and HCM methodology was used for unsignalized intersections.
- The Project is expected to generate a total estimated net external 6,209 weekday daily trips, including 374 trips (94 inbound/280 outbound) during the weekday AM peak hour and 486 trips (296 inbound/190 outbound) during the weekday PM peak hour.
- Compared to the Existing conditions, the Project is expected to have three significantly impacted intersections, and compared to the Future conditions, the Project is expected to have four significantly impacted intersections.
 - o In Existing plus Project, the following three intersections are impacted:
 - 9. Buena Vista Street & Duarte Road
 - 10. I-210 Westbound off-ramp & Central Avenue
 - 11. Village Road & Duarte Road
 - o In Future plus Project, the following four intersections are impacted:
 - 9. Buena Vista Street & Duarte Road
 - 10. I-210 Westbound off-ramp & Central Avenue
 - 11. Village Road & Duarte Road
 - 14. Highland Avenue & Huntington Drive
- All but one of the significantly impacted intersections would be mitigated under Existing plus Project conditions and Future plus Project conditions. The remaining significantly impacted intersection (#9. Buena Vista Street & Duarte Road) would not be mitigated because the infeasibility of modifying Buena Vista Street & Duarte Road.
- The Project is not expected to significantly impact regional arterial, freeway, or transit facilities under the CMP criteria.
- The Project is estimated to produce 9.5 vehicle miles traveled per resident and 13.3 vehicle miles traveled per employee.

- The Project is not estimated to create off-ramp queue lengths that exceed 85% of the capacity of the ramp. The Project is not projected to have a change in the MOE at any mainline location.
- Below is a summary of the significant impacts identified in the previous Duarte Station Specific Plan (2013) as compared to this report. Both studies identified four significant impacts. The prior study had two significant impacts remaining after proposed mitigations, while this study has one significant and unavoidable impact remaining.

Intersection	Impacted in prior	Impacted in
	(2013 EIR) study?	current study?
Buena Vista St & Duarte Rd	Y*	Y
Highland Ave & Huntington Dr	N	Υ*
Buena Vista St & 3 Ranch Rd	Y	N
I-210 WB Off-ramp & Central Ave	N/A	Υ*
Village Rd & Duarte Rd	Υ*	Υ*
Highland Ave & Evergreen St	Y	N

^{*} Indicates that the intersection was mitigated

REFERENCES

2010 Highway Capacity Manual, Transportation Research Board, 2010.

Congestion Management Program for Los Angeles County, Metro, 2010.

Trip Generation, 10th Edition, Institute of Transportation Engineers (ITE), 2017.

California Manual on Uniform Traffic Control Devices, Caltrans, 2014.

Guide for the Preparation of Traffic Impact Studies, Caltrans 2002.

APPENDIX A: METHODOLOGIES & ASSUMPTIONS MEMO

MEMORANDUM

Date: March 11th, 2019

To: Genevieve Sharrow, MIG & Craig Hensley, AICP, City of Duarte

From: John Muggridge, AICP, and Steven Keith, AICP

Subject: Duarte Station Specific Plan Transportation Impact Analysis Methodologies

and Assumptions

OC18-3073

Fehr & Peers is preparing the transportation impact analysis for the Duarte Station Specific Plan (Project) in Duarte, California. The purpose of this memorandum is to summarize the methodologies and assumptions that will be used in the study.

This memorandum is divided into the following sections: Project Description, Study Area, Data Collection, Analysis Scenarios, Trip Generation, Trip Distribution, Intersection Impact Analysis Guidelines, and Operations and Methodology Assumptions.

Project Description

This study analyzes traffic conditions associated with the proposed Duarte Station Specific Plan located in the City of Duarte. The proposed project consists of up to 1,400 multi-family mid-rise residential dwelling units, 12,500 square feet of commercial related land uses, and 100,000 square feet of office space. The project is located north of the Duarte/City of Hope Gold Line Metro Station. The approximately 19.08-acre Specific Plan area contains four parcels, each under separate ownership.

The project is the adoption and long-term implementation of the Duarte Station Specific Plan, as amended.

Study Area

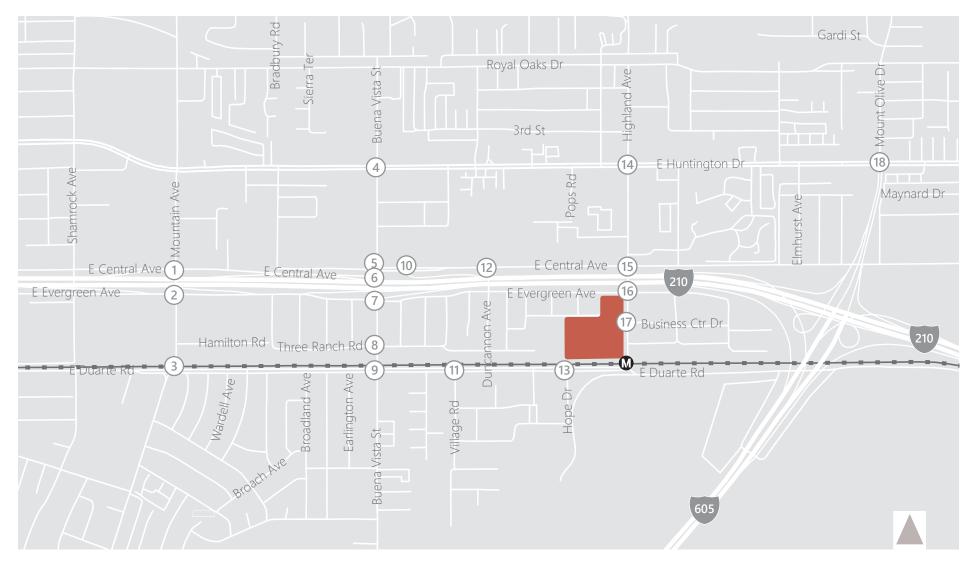
Study Intersections

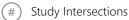
The study area is comprised of 13 signalized intersections and five unsignalized intersections for a total of 18 study intersections, all located within the City of Duarte. These study intersections were identified based on the estimated trip generation and trip distribution of the Project, discussed later in this memorandum, and also informed by the prior Specific Plan. Figure 1 identifies the study intersections listed below:

- 1. Mountain Avenue & Central Avenue (signalized)
- 2. Mountain Avenue & Evergreen Street (signalized)
- 3. Mountain Avenue & Duarte Road (signalized)
- 4. Buena Vista Street & Huntington Drive (signalized)
- 5. Buena Vista Street & Central Avenue (signalized)
- 6. Buena Vista Street & I-210 Westbound On-Ramp (NBL is signalized)
- 7. Buena Vista Street & Evergreen Street/I-210 Eastbound On-Ramp (signalized)
- 8. Buena Vista Street & Three Ranch Road (unsignalized)
- 9. Buena Vista Street & Duarte Road (signalized)
- 10. I-210 Westbound Off-Ramp & Central Avenue (unsignalized)
- 11. Village Road & Duarte Road (unsignalized)
- 12. Duncannon Avenue & Evergreen Street (unsignalized)
- 13. Hope Drive & Duarte Road (signalized)
- 14. Highland Avenue & Huntington Drive (signalized)
- 15. Highland Avenue & Central Avenue (signalized)
- 16. Highland Avenue & Evergreen Street (unsignalized)
- 17. Highland Avenue & Business Center Drive (signalized)
- 18. I-605 Terminus/Mt. Olive Drive & Huntington Drive (signalized)

Off-Ramps and Freeways

Fehr & Peers will discuss the study area, project trip generation, and trip distribution with Caltrans District 7 staff. Depending on conversations with Caltrans staff, the technical analysis could cover off-ramp queuing analysis and freeway mainline segment analysis at the following locations:


Off-Ramp Queuing


- 10. I-210 Westbound Off-Ramp & Central Avenue
- 18. I-605 Terminus/Mt. Olive Drive & Huntington Drive

Freeway Mainline

- I-210 West of Mountain Avenue
- I-210 Between Buena Vista Street and Highland Avenue
- I-210 East of Mt. Olive Drive
- I-605 South of I-210

Study locations and analysis will be finalized during the meeting with Caltrans.

Project Site Boundary

Metro Rail Station

Data Collection

Existing weekday AM peak period (7:00 to 9:00 AM) and PM peak period (4:00 to 6:00 PM) intersection counts were collected at the study intersections listed above on December 4, 2018.

Freeway mainline volumes will be obtained on I-210 and I-605 in the study area using Caltrans' Performance Measurement System (PeMS).

Fehr & Peers collected the following information during a field visit to the study area:

- Lane configurations
- Signal phasing
- Land uses
- Existing pedestrian and bicycle facilities
- On-street parking conditions
- Transit service

As part of the data collection effort Fehr & Peers requests the following from the City of Duarte staff:

- Anticipated driveway locations of the Proposed Project
- Funded roadway improvement projects in the study area that should be considered in the future analysis
- Funded bicycle/pedestrian/transit improvements in the study area that should be considered in the future analysis

The City of Duarte has also provided Fehr & Peers with the following data:

- Pending and approved development projects within 1.5 miles from the Project site that will be included in the forecasting effort. The related projects list is as follows:
 - o 1634 Third Street and 1101 Oak Avenue
 - o 1122 Huntington Drive
 - o 2632 Royal Oaks Drive
 - o 946-962 Huntington Drive
 - o 1405-37 Huntington Drive
 - o 1200 Huntington Drive Duarte Town Center Specific Plan
 - City of Hope Specific Plan

- o 1193 Huntington Drive
- o 1525 Huntington Drive
- o 928 Huntington Drive
- Signal timing information at intersections containing on- or off-ramps

Analysis Scenarios

In accordance with the California Environmental Quality Act (CEQA) the study will analyze the buildout of the Project in support of the environmental impact report (EIR). The following four scenarios will be analyzed:

- Existing (2018): Existing traffic volumes and lane geometeries will be used to evaluate Existing (2018) conditions.
- Existing (2018) Plus Project: Project traffic assuming buildout of the Project will be added to the Existing Year (2018) traffic volumes to evaluate Existing (2018) Plus Project conditions.
- <u>Future Year (2025):</u> Future Year (2025) conditions will be developed using the ambient growth rates from the *Congestion Management Program for Los Angeles County* (CMP) (Metro, 2010) and cumulative information, including pending and approved development projects and funded improvements in the study area.
- <u>Future Year (2025) Plus Project:</u> Project traffic assuming buildout of the proposed Project will be added to the Future Year (2025) traffic volumes to evaluate Future Year (2025) Plus Project conditions.

Trip Generation

The draft Project site plan is provided in Figure 2A-B. The Project proposes the construction of the following:

- Mid-Rise Apartments 1,400 dwelling units
- Commercial space 12,500 square feet
 - Broken into 6,250 square feet High-Turnover (Sit Down) Restaurant & 6,250 square feet Retail
- Office 100,000 square feet

Genevieve Sharrow & Craig Hensley, AICP March 11, 2019 Page 7 of 19

Project Total Trip Generation

Trip generation rates published in *Trip Generation*, 10th Edition (Institute of Transportation Engineers, 2017) were used to calculate Project trip generation estimates for the proposed multifamily housing (mid-rise), high-turnover (sit down) restaurant, retail, and office land uses.

Several trip reduction adjustments were applied to the Project's gross trip generation estimates based on the Project's design, location, programming, and provided amenities. Discussion of these credits is summarized below.

Internal Capture Adjustment

Internal trip capture is the portion of vehicular trips generated by a mixed-use development that both begin and end within the development. An example of this would be residents or employees eating dinner at one of the Project's restaurants. Internal trip estimates were made for each of the Project's land uses based on the specific mix of uses and sizes within the Project utilizing Transportation Research Board (TRB) National Cooperative Highway Research Program (NCHRP) Report 684: Enhancing Internal Trip Capture Estimation for Mixed-Use Developments. This methodology is a best practice for determining internal capture reductions. The NCHRP methodology considers the specific mix and size of uses to determine internal trip capture rates by land use and analysis period.

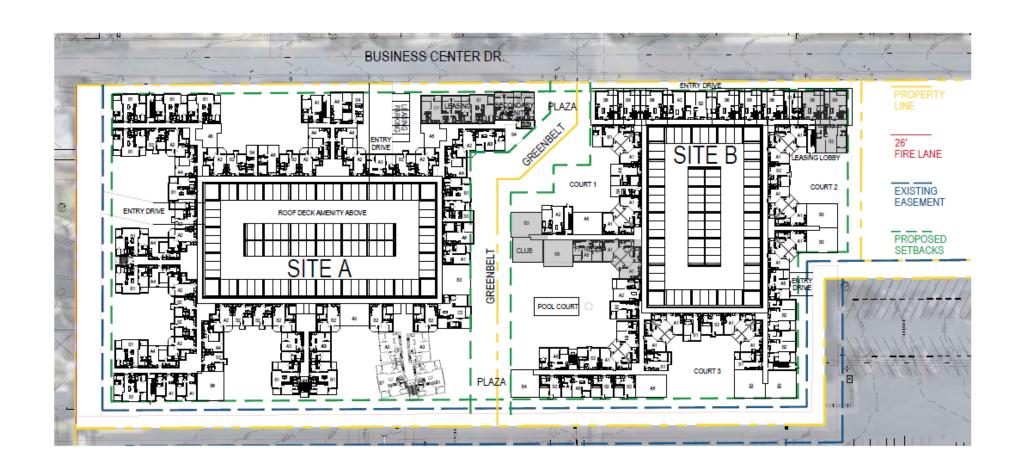
Transit/Walk Adjustment

The Project is located in a transit-rich environment, adjacent to the Metro Gold Line Duarte/City of Hope subway station, and in close proximity to local bus lines. A 15% vehicle trip reduction was applied to each land use since they are all located within a quarter-mile walking distance of high-quality transit.

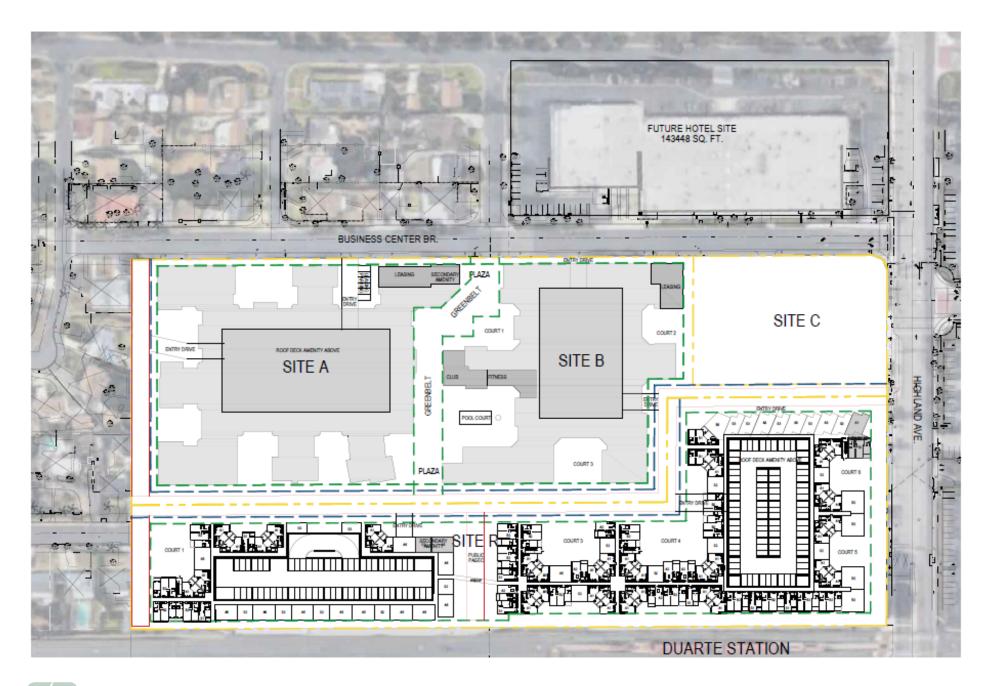
Pass-by Adjustment

Pass-by credits were applied to the restaurant and retail uses based on the *Trip Generation Handbook: An ITE Recommended Practice (2003)* document. Pass-by trip credits are commonly applied to commercial uses to reflect the situation where a percentage of patrons to the establishment are traveling on the roadway (for instance, on their way to work) and stop to shop or eat. Under this situation, that trip is already on the roadway and is generated by the ultimate destination of that person's trip. A reduction of 20% was applied to the high-turnover (sit down) restaurant uses and reduction of 50% was applied to the retail uses. No pass-by trip credit is applied

Genevieve Sharrow & Craig Hensley, AICP March 11, 2019 Page 8 of 19



to the residential units and office space because traveling to these uses is typically the final destination of one's trip, not a destination one chooses as they pass-by.


Existing Use Adjustment

Existing uses at the Project Site are identified as general light industrial land uses. Generally, when existing land uses are replaced by higher-density uses, the net new trip generation of the new Project is credited because a portion of the new Project's trips are replacing existing trips on the roadway network to the same site for the prior use.

As identified in Table 1, the Project is expected to generate a total estimated net external 6,209 weekday daily trips, including 374 trips (94 inbound/280 outbound) during the weekday AM peak hour and 486 trips (296 inbound/190 outbound) during the weekday PM peak hour.

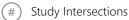
TABLE 1 DUARTE STATION SPECIFIC PLAN TRIP GENERATION ESTIMATES

	ITE Land Use		Trip Generation Rates [a]					Estimated Trip Generation								
Land Use	Code	Size	Daily	AM Peak Hour		PM Peak Hour		Daily	AM Peak Hour Trips		PM Peak Hour Trips					
	Code		Daily	Rate	In%	Out%	Rate	In%	Out%	Daily	In	Out	Total	In	Out	Total
PROPOSED PROJECT																
Multifamily Housing (Mid-Rise)[b] Less: Internal capture [c]	221	1,400 DU	[b] 3%	[b]	26% 1%	74% 3%	[b]	61% <i>3%</i>	39% <i>7</i> %	7,628 (229)	118 <i>(1)</i>	337 (10)	455 (11)	340 (10)	218 (15)	558 (25)
Less: Transit/Walk/Bike credit [d] Net External Vehicle Trips			15%	15%			15%			(1,110) <u>6,289</u>	(18) <u>99</u>	(49) 278	(67) <u>377</u>	(50) 280	(30) 173	(80) 453
High-Turnover (Sit Down) Restaurant Less: Internal capture [c]	932	6.25 ksf	112.18 28%	9.94	55% 41%	45% 38%	9.77	62% 25%	38% 46%	701 (196)	34 (14)	28 (11)	62 (25)	38 (10)	23 (11)	61 (21)
Less: Transit/Walk/Bike credit [d] Total Driveway Trips			15%	15%		3070	15%	2370	1070	(76) 429	(3) 17	(3) 14	(6) 31	(4) 24	(2) 10	(6) 34
Less: Pass-by [e] Net External Vehicle Trips			20%	20%			20%			(86) 343	(3) 14	(3) 11	(6) 25	(5) 19	(2) <u>8</u>	(7) 27
Retail	820	6.25 ksf	37.75	0.94	62%	38%	3.81	48%	52%	236	4	2	6	12	12	24
Less: Internal capture [c] Less: Transit/Walk/Bike credit [d]			42% 15%	15%	57%	33%	15%	70%	55%	(99) (21)	(2) 0	(1) 0	(3) 0	(8) 0	(7) 0	(15) 0
Total Driveway Trips Less: Pass-by [e]			50%	50%			50%			<u>116</u> (58)	<u>2</u> (1)	<u>1</u> (1)	<u>3</u> (2)	<u>4</u> (2)	<u>5</u> (3)	<u>9</u> (5)
Net External Vehicle Trips										<u>58</u>	<u>1</u>	<u>0</u>	1	<u>2</u>	2	<u>4</u>
Office Less: Internal capture [c]	710	100.00 ksf	[f] 15%	[f]	86% 17%	14% 74%	[f]	16% <i>60%</i>	84% 5%	1,061 (159)	103 (18)	17 (13)	120 (31)	18 (11)	96 (5)	114 (16)
Less: Transit/Walk/Bike credit [d] Net External Vehicle Trips			15%	15%	1776	7470	15%	0078	370	(135) (135) 767	(13) 72	(1) 3	(14) 75	(1) 6	(14) 77	(15) 83
•																
TOTAL DRIVEWAY TRIPS										7,601	190	296	486	314	265	579
TOTAL PROJECT EXTERNAL VEHICLE	TRIPS									7,457	186	292	478	307	260	567
EXISTING USE CREDIT																
General Light Industrial Net External Vehicle Trips	110	313.96 ksf	[g]	[g]	88%	12%	[g]	13%	87%	1,248 1,248	92 92	12 <u>12</u>	104 104	11 11	70 70	81 81
·															_	
TOTAL EXISTING USE CREDIT										1,248	92	12	104	11	70	81
NET INCREMENTAL EXTERNAL TRIPS	5									6,209	94	280	374	296	190	486

Notes:

- [a] Source: Institute of Transportation Engineers (ITE), Trip Generation, 10th Edition , 2017.
- [b] ITE Multifamily Housing (Mid-Rise) trip generation equations used rather than linear trip generation rate:
 - Daily: T = 5.45*A 1.75, where T = trips, A = area in ksf (Suburban/Urban rate used)
 - $AM\ Peak\ Hour: Ln(T) = 0.98 * LN(A) 0.98, where\ T = trips,\ A = area\ in\ ksf\ (Suburban/Urban\ equation\ used)$
 - PM Peak Hour: Ln(T) = 0.96*LN(A) 0.63, where T = trips, A = area in ksf (Suburban/Urban equation used)
- [c] Internal capture represents the percentage of trips between land uses that occur within the site. Transportation Research Board (TRB) National Cooperative Highway Research Program (NCHRP) Report 684: Enhancing Internal Trip Capture Estimation for Mixed-Use Developments, 2011. The daily credit is assumed to be 75% of peak hour credits taken.
- [d] The transit, walk, and bike credit is based on the development's proximity to the Duarte Gold Line Station and Duarte's Central Business District.
- [e] The pass-by credit is based on Trip Generation Handbook: An ITE Recommended Practice , 2003.
- [f] ITE Office trip generation equations used rather than linear trip generation rate:
 - Daily: Ln(T) = 0.97 Ln(A) + 2.50, where T = trips, A = area in ksf (Suburban/Urban equation used)
 - AM Peak Hour: T = 0.94(A) + 26.49, where T = trips, A = area in ksf (Suburban/Urban equation used)
- PM Peak Hour: Ln(T) = 0.95 Ln(A) + 0.36, where T = trips, A = area in ksf (Suburban/Urban equation used)
- [g] ITE General Light Industrial trip generation equations used rather than linear trip generation rate:
 - Daily: T = 3.79*A + 57.96, where T = trips, A = area in ksf (Suburban/Urban equation used)
 - AM Peak Hour: $Ln(T) = 0.74 \times Ln(A) + 0.39$, where T = trips, A = area in ksf (Suburban/Urban equation used)
 - PM Peak Hour: Ln(T) = 0.69*Ln(A) + 0.43, where T = trips, A = area in ksf (Suburban/Urban equation used)

Genevieve Sharrow & Craig Hensley, AICP March 11, 2019 Page 12 of 19



Trip Distribution

The Project trip distribution is based on a variety of different sources such as the Southern California Association of Governments (SCAG) Travel Demand Forecasting Model, the prior Duarte Specific Plan, other approved projects nearby, and Project team experience. A select zone analysis with the SCAG Travel Demand Forecasting Model was used to inform the general distribution patterns for this study. The model used information from the traffic analysis zone (TAZ) where the Project is located to estimate the distribution of trips.

Other important factors used to inform the Project trip distribution included: the characteristics of the street system serving the project site; accessibility of routes to and from the Project site; locations of commercial centers residents of the Project would be drawn to, and locations of residential areas other persons would be drawn from. These are factored into the model but also are used to help refine the outputs. The trip distribution will be finalized through conversations with the Project team and city officials to ensure that the assumptions are realistic and vetted. The distribution of Project trips is illustrated in Figure 3.

Project Site Boundary

Metro Rail Station

Intersection Impact Analysis Guidelines

Intersection impact analysis criteria consistent with City of Duarte and Los Angeles CMP guidelines will be applied for this Project.

Signalized Intersections

The following thresholds of significance for the incremental increase in the V/C ratio will be used to assess significant transportation impacts at the signalized intersections located within the City of Duarte. The significance of the Project's incremental increase in the V/C ratio is dependent upon the underlying LOS value for that specific peak hour based on the following thresholds:

LOS	Final V/C Ratio	Project Related Increase in V/C			
E or F	> 0.901	equal to or greater than 0.020			

Unsignalized Intersections

The following factors will be used to assess significant transportation impacts at the unsignalized intersections in the City of Duarte. The results represent the HCM unsignalized LOS:

- Intersection is projected to decline to LOS E or F from LOS D or better with the addition of traffic volumes associated with the proposed project; and
- The intersection meets signal warrants either caused by project volumes, or project volumes are added at an intersection that meets signal warrants in the baseline scenario(s).

Signal warrants are volume based thresholds to determine whether a signal would be recommended, as determined in the *California Manual on Uniform Traffic Control Devices*, also known as MUTCD 2014 (Caltrans, 2014). The peak hour signal warrant test will be used for the analysis. The warrant for a traffic signal is met if a plotted point representing the vehicles per hour on the major street (for both approaches) and the corresponding vehicles per hour on the higher-volume minor-street approach (one direction only) for one hour lies above the applicable curve in Figure 4C-3 in MUTCD 2014 for the combination of approach lanes. If the combined volume of the major approaches and the corresponding conflicting volumes are greater than the threshold determined by the intersection configuration, then a traffic signal could be warranted.

Los Angeles Congestion Management Program (CMP)

A significant impact occurs when the proposed project increases traffic demand on a CMP facility by 2% of capacity (V/C \geq 0.02), causing LOS F (V/C > 1.00). If the facility is already at LOS F, a significant impact occurs when the proposed project increases traffic demand on a CMP facility by 2% of capacity (V/C \geq 0.02). The lead agency may apply more stringent criteria if desired.

Operations and Methodology Assumptions

Intersection Analysis

Signalized intersections will be analyzed using the Intersection Capacity Utilization (ICU) methodology. The ICU methodology is used to determine the intersection volume-to-capacity (V/C) ratio and corresponding LOS for the turning movements and intersection characteristics at the signalized intersections. "Capacity" represents the maximum volume of vehicles in the critical lanes that have a reasonable expectation of passing through an intersection in one hour under prevailing roadway and traffic conditions. The ICU ratios used in this study are calculated by dividing critical traffic movement volumes at an intersection by the capacity per number of lanes for the movement. AM and PM peak hour ICU ratios and LOS grades will be calculated using Fehr & Peers' ICU spreadsheet tool. Lane capacity assumptions will not exceed 1,600 vehicles per lane per hour. Table 2 identifies the LOS criteria for signalized intersections.

Stop-controlled intersections will be analyzed using Synchro 10 software and the *Highway Capacity Manual (HCM) 6th Edition* (Transportation Research Board [TRB], 2017]) methodology. Table 3 identifies the LOS criteria for the stop-controlled intersections. Additionally, peak hour signal warrant analysis will be conducted for stop-controlled intersections as determined in the *2014 California Manual on Uniform Traffic Control Devices*, also known as MUTCD 2014 (Caltrans, 2014).

Off-Ramp and Freeway Analysis

Off-Ramp

A freeway off-ramp queuing analysis will be conducted to determine queuing conditions at the off-ramps as a result of traffic from the Project. Queue lengths will be estimated using Synchro traffic analysis software package. Each intersection will be configured according to its existing (and future, if applicable) arrival conditions, including signal timing and physical geometry. The focus of the queuing analysis is to determine if there is adequate storage capacity at the off-ramps. Off-ramp

Genevieve Sharrow & Craig Hensley, AICP March 11, 2019 Page 16 of 19

queuing will be identified if the off-ramp queue extends beyond 85% of the ramp length during the AM and PM peak hours.

Freeway Mainlines

Freeway mainlines will be evaluated using the Highway Capacity Software (HCS) tool, which applies methodologies contained in the *HCM* 6th Edition. The LOS will be calculated for each study facility based on density of number of vehicles per hour per lane. Table 4 describes the LOS thresholds for freeway sections identified in the HCM 6th Edition.

Per the *Guide for the Preparation of Traffic Impact Studies* (Caltrans, 2002), Caltrans endeavors to maintain a target LOS at the transition between LOS C and LOS D on State highway facilities. However, Caltrans acknowledges that this may not always be feasible. If an existing State highway facility is operating at less than the appropriate target LOS, the existing measure of effectiveness (MOE) should be maintained (Caltrans TIS Guide, page 1). This latter criterion does not allow for determination of effect if the segment is operating at LOS F under baseline conditions. For informational purposes, freeway segments operating at LOS F under base conditions will be identified if the Project traffic added to these segments is estimated to represent 2% or more of the total traffic on the segments.

TABLE 2
LEVEL OF SERVICE DEFINITIONS
FOR SIGNALIZED INTERSECTIONS

	Intersection			
Level of Service Capacity		Definition		
	Utilization			
А	0.000-0.600	EXCELLENT. No Vehicle waits longer than one red		
		light and no approach phase is fully used.		
В	0.601-0.700	VERY GOOD. An occasional approach phase is		
		fully utilized; many drivers begin to feel somewhat		
		restricted within groups of vehicles.		
С	0.701-0.800	GOOD. Occasionally drivers may have to wait		
		through more than one red light; backups may		
		develop behind turning vehicles.		
D	0.801-0.900	FAIR. Delays may be substantial during portions		
		of the rush hours, but enough lower volume periods		
		occur to permit clearing of developing lines,		
		preventing excessive backups.		
Е	0.901-1.000	POOR. Represents the most vehicles intersection		
		approaches can accommodate; may be long lines		
		of waiting vehicles through several signal cycles.		
F	> 1.000	FAILURE. Backups from nearby locations or on		
		cross streets may restrict or prevent movement of		
		vehicles out of the intersection approaches.		
		Tremendous delays with continuously increasing		
		queue lengths.		

Source: Transportation Research Circular No. 212, Interim Materials on Highway Capacity,

Transportation Research Board, 1980.

TABLE 3
LEVEL OF SERVICE DEFINITIONS FOR
UNSIGNALIZED INTERSECTIONS

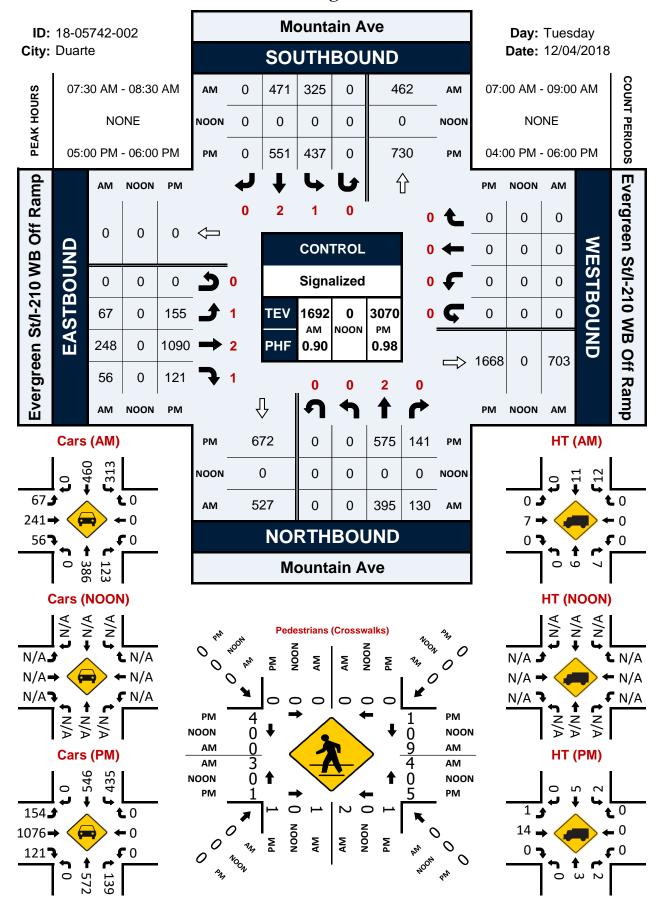
Level of Service	Control Delay
А	<u><</u> 10.0
В	> 10.0 and <u><</u> 15.0
С	> 15.0 and <u><</u> 25.0
D	> 25.0 and <u><</u> 35.0
E	> 35.0 and <u><</u> 50.0
F	> 50.0

Source: Highway Capacity Manual (Transportation Research Board, 2016.)

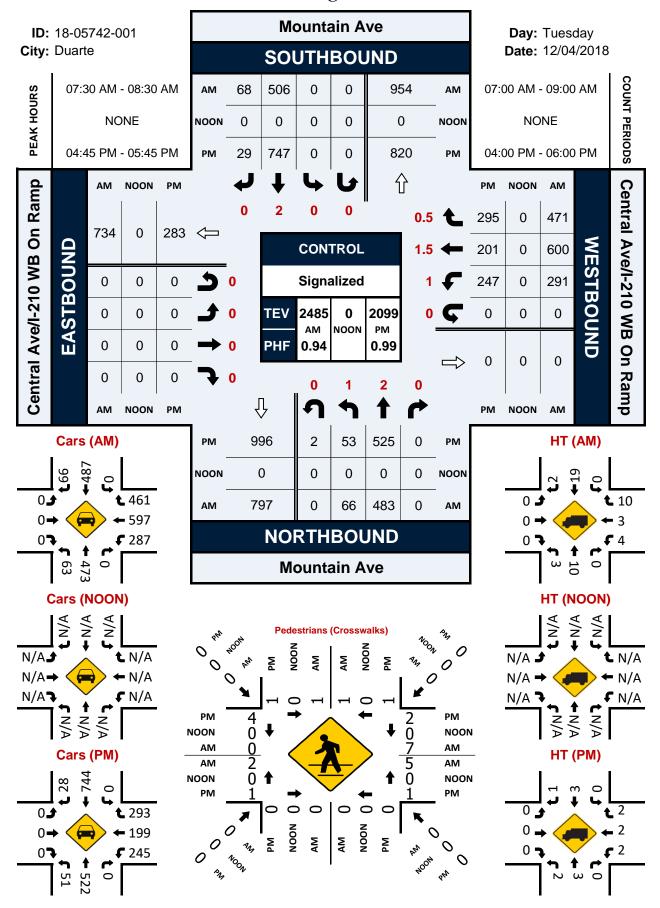
TABLE 4
LEVEL OF SERVICE DEFINITIONS FOR
FREEWAY SEGMENTS

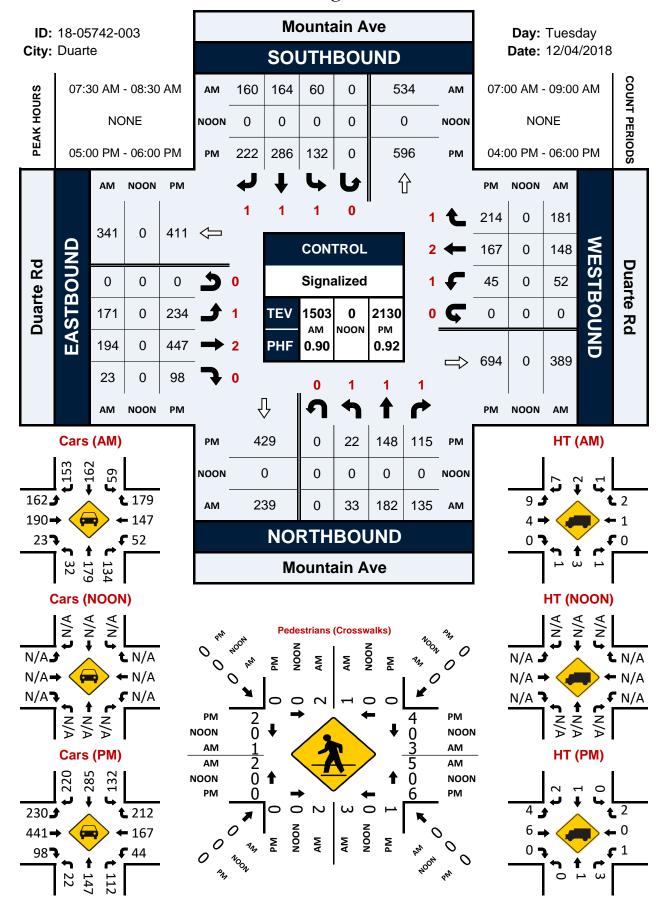
Level of Service	Mainline (Basic) Density					
Level of Service	(vplpm) [a]	Definition				
		Free-flow speeds prevail. Vehicles are almost				
А	<u><</u> 11	completely unimpeded in their ability to maneuver				
		within the traffic stream.				
		Free-flow speeds are maintained. The ability to				
В	> 11 to 18	maneuver with the traffic stream is only slightly				
		restricted.				
		Flow with speeds at or near free-flow speeds.				
С	> 18 to 26	Freedom to maneuver within the traffic stream is				
		noticeably restricted, and lane changes require				
		more care and vigilance on the part of the driver.				
		Speeds decline slightly with increasing flows.				
D	20 4- 25	Freedom to maneuver with the traffic stream is				
D	> 26 to 35	more noticeably limited, and the driver experiences				
		reduced physical and psychological comfort.				
		reduced physical and psychological conflort.				
		Operation at capacity. There are virtually no usable				
Е	> 35 to 45	gaps within the traffic stream, leaving little room to				
_		maneuver. Any disruption can be expected to				
		produce a breakdown with queuing.				
F	> 45	Represents a breakdown in flow.				

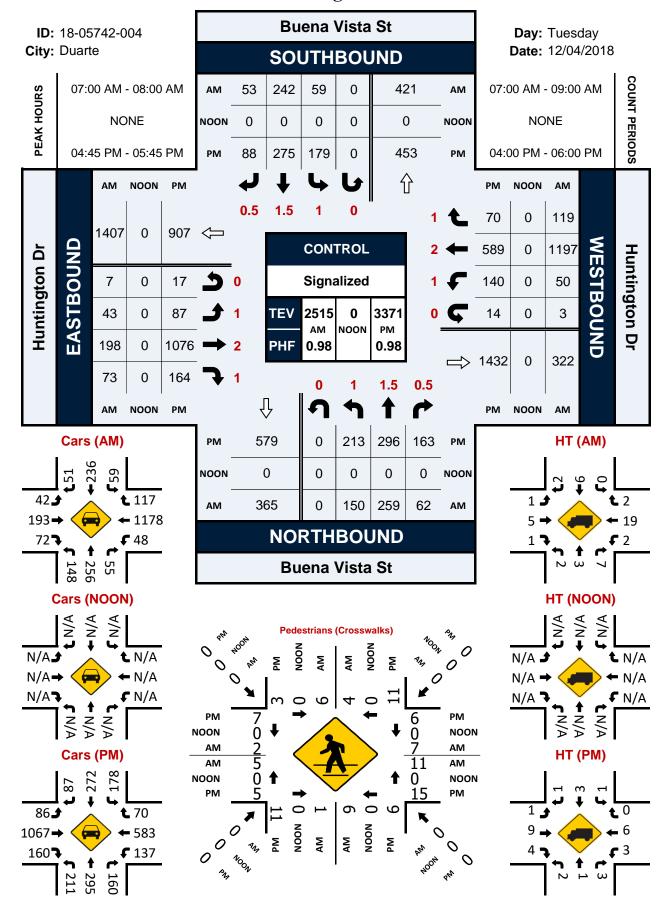
Notes:

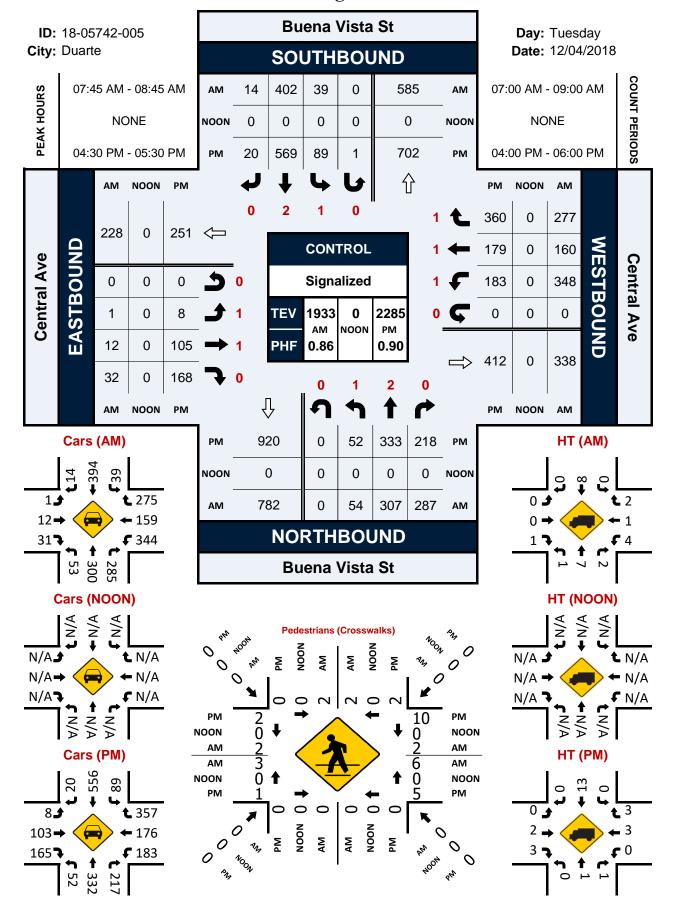

[a]: Density is reported in vehicles per lane per mile.

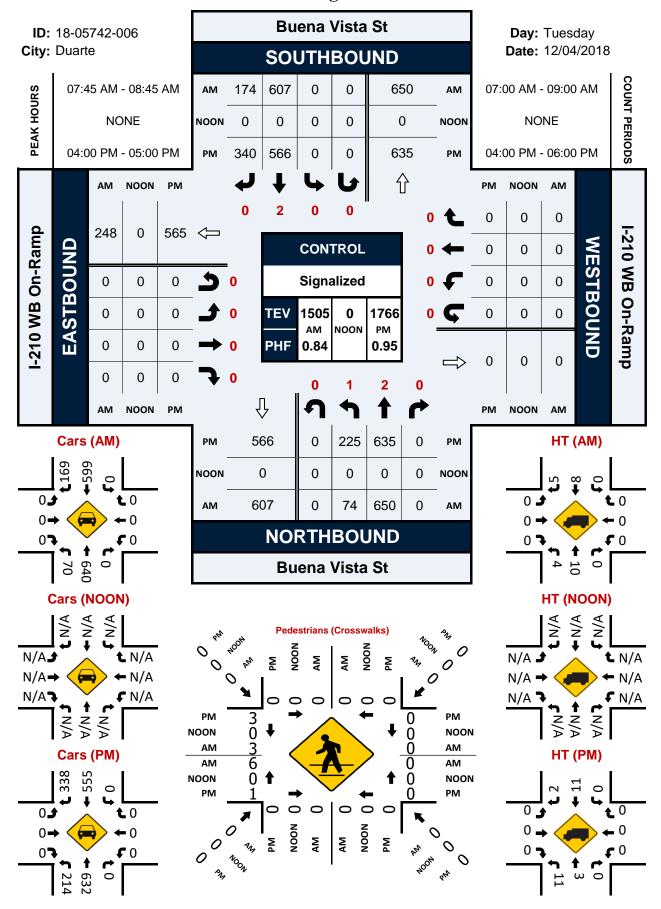
Source: Highway Capacity Manual (Transportation Research Board, 2016.)

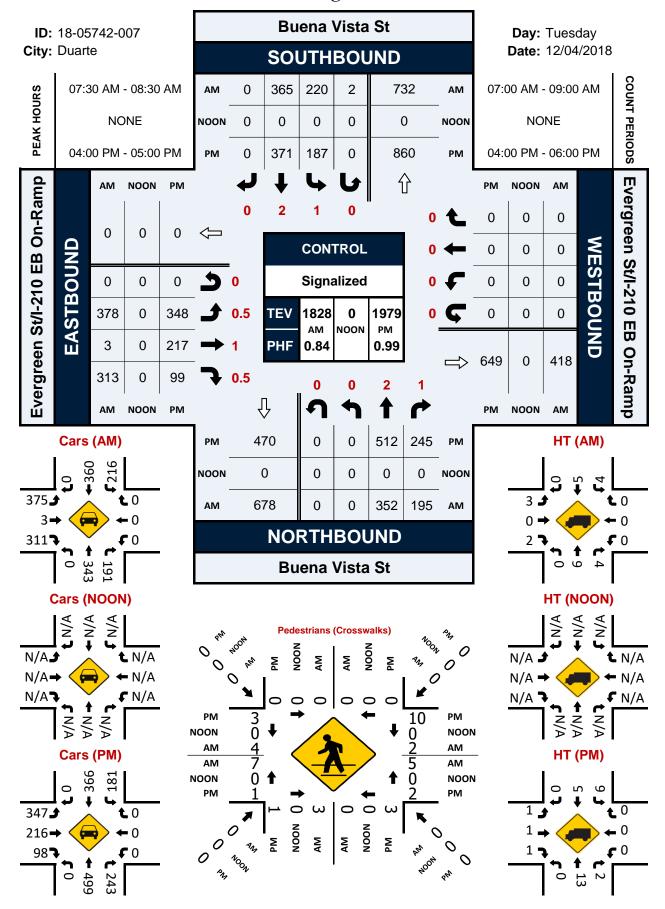

APPENDIX B: INTERSECTION COUNTS

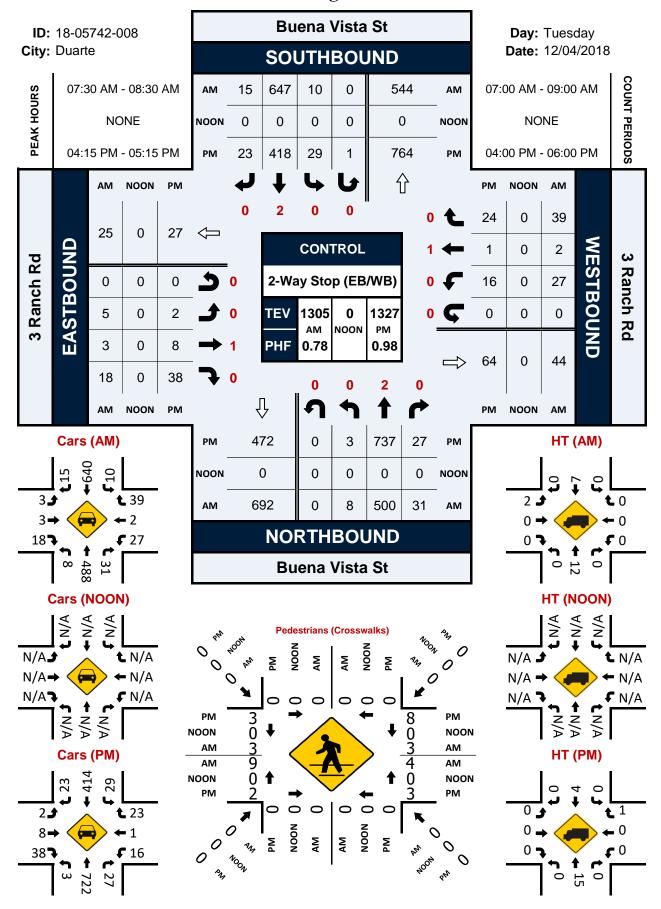

Mountain Ave & Evergreen St/I-210 WB Off Ramp

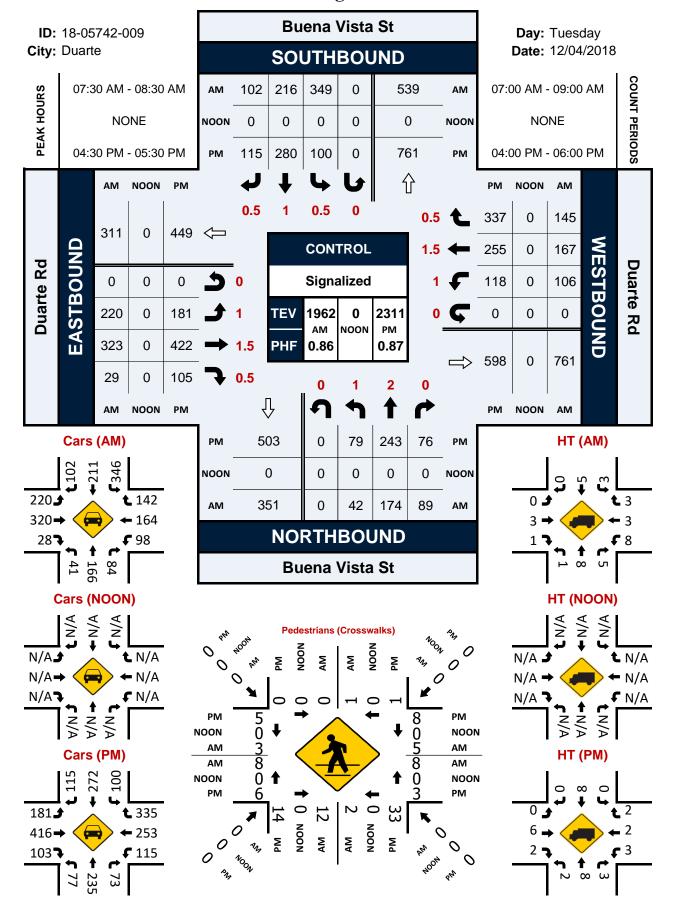

Mountain Ave & Central Ave/I-210 WB On Ramp

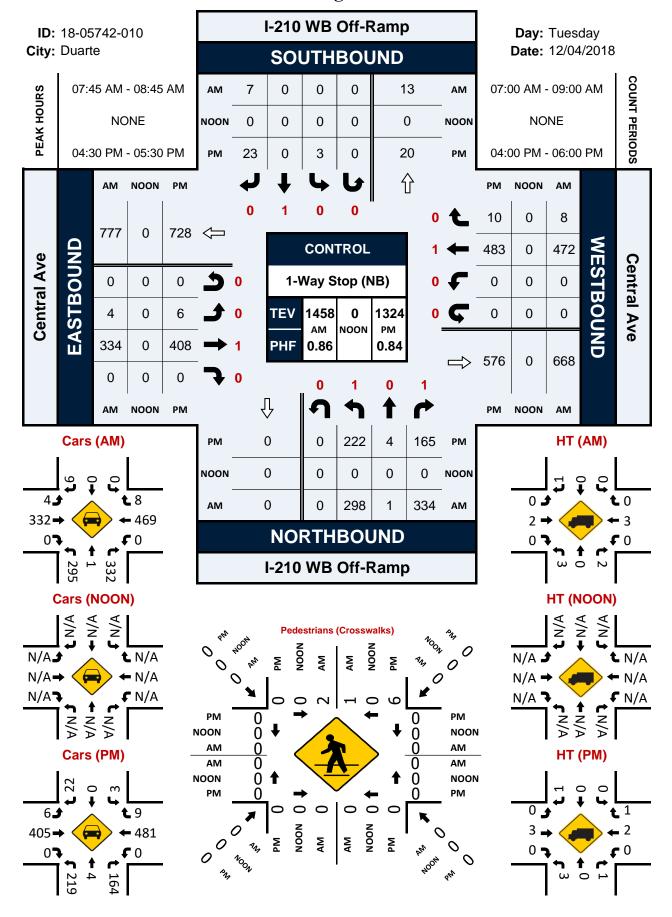

Mountain Ave & Duarte Rd

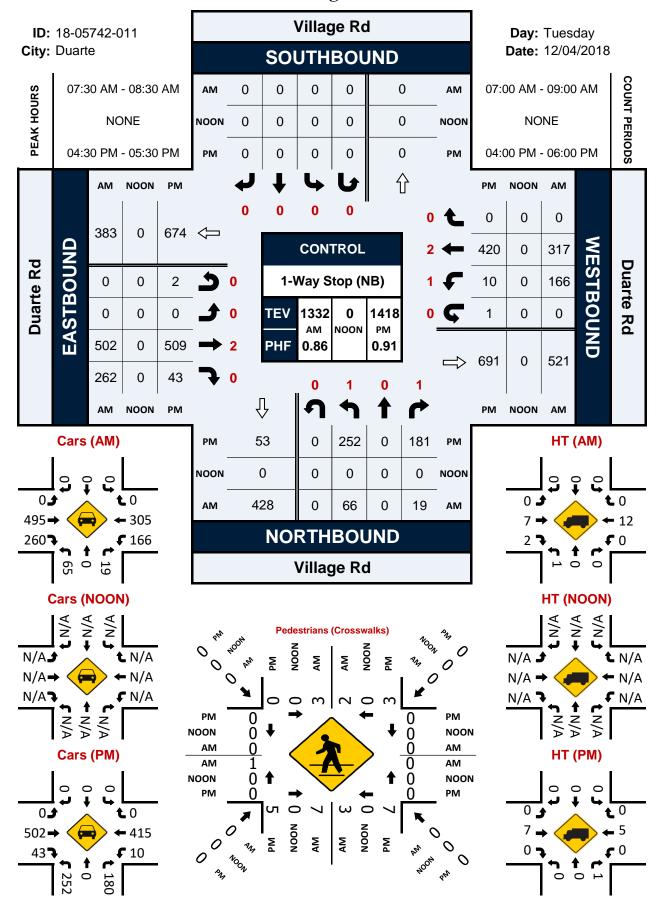

Buena Vista St & Huntington Dr

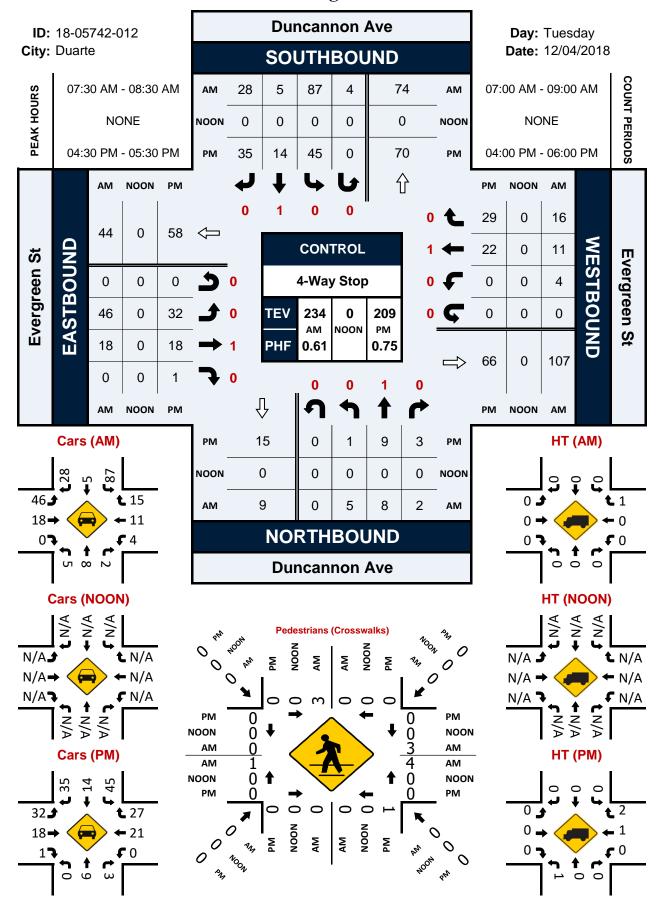

Buena Vista St & Central Ave

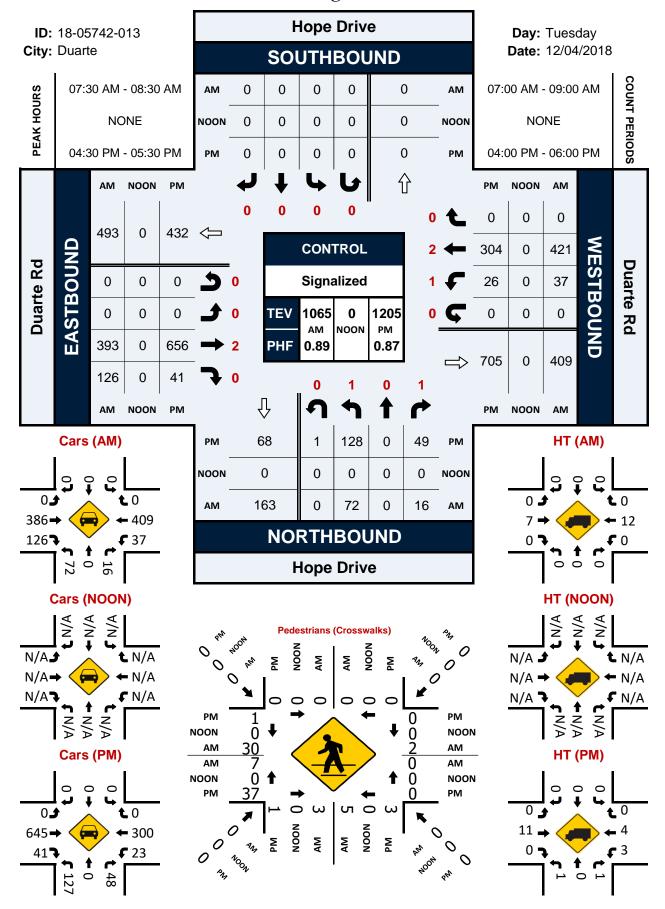

Buena Vista St & I-210 WB On-Ramp

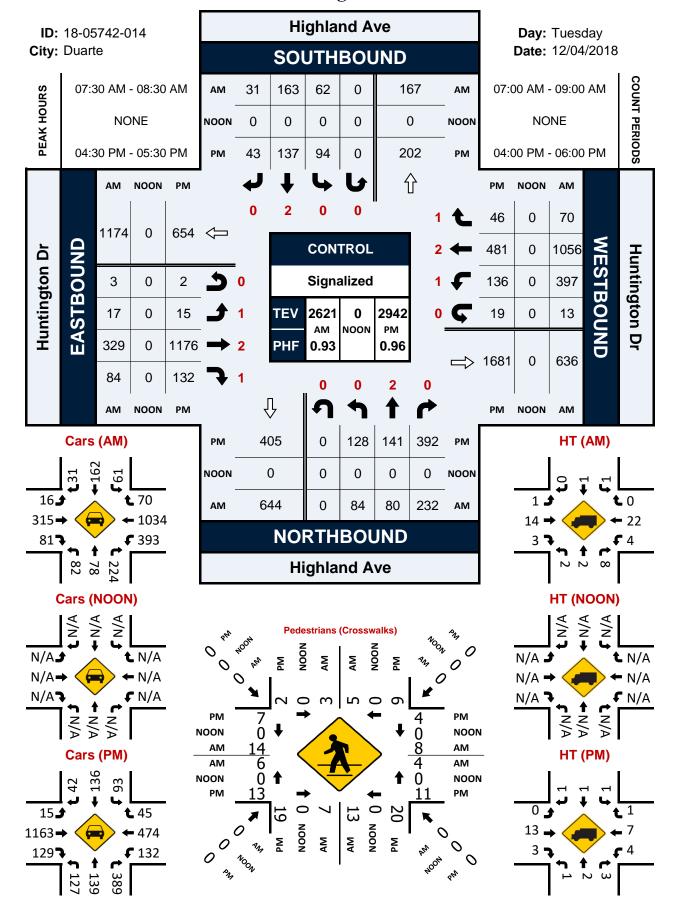

Buena Vista St & Evergreen St/I-210 EB On-Ramp

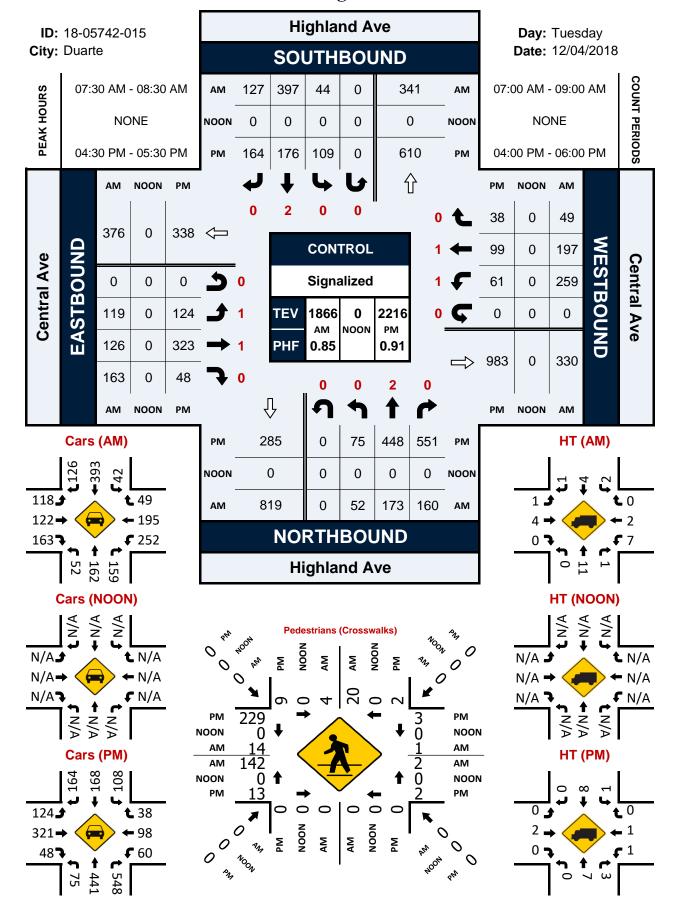

Buena Vista St & 3 Ranch Rd

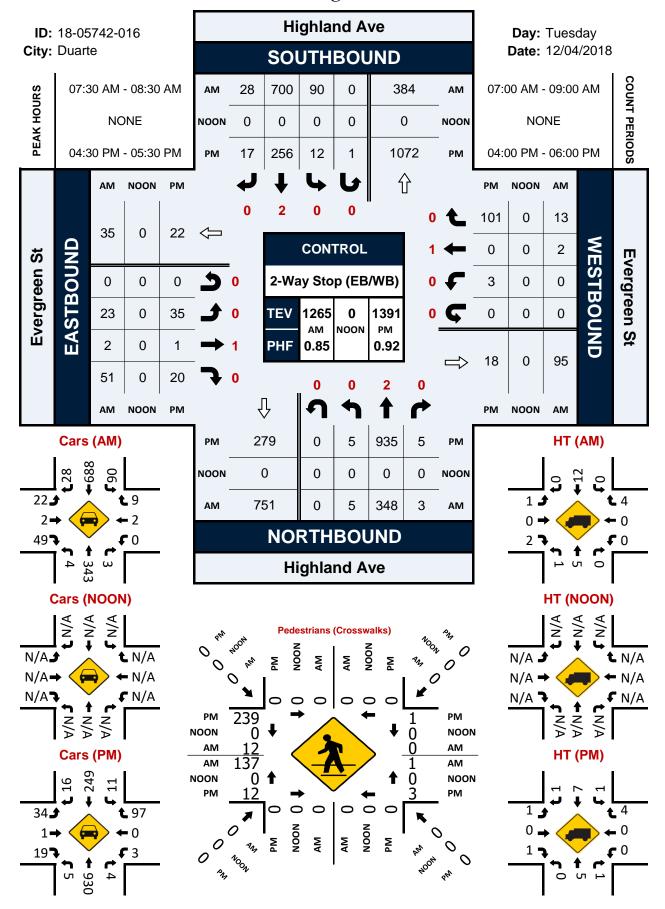

Buena Vista St & Duarte Rd

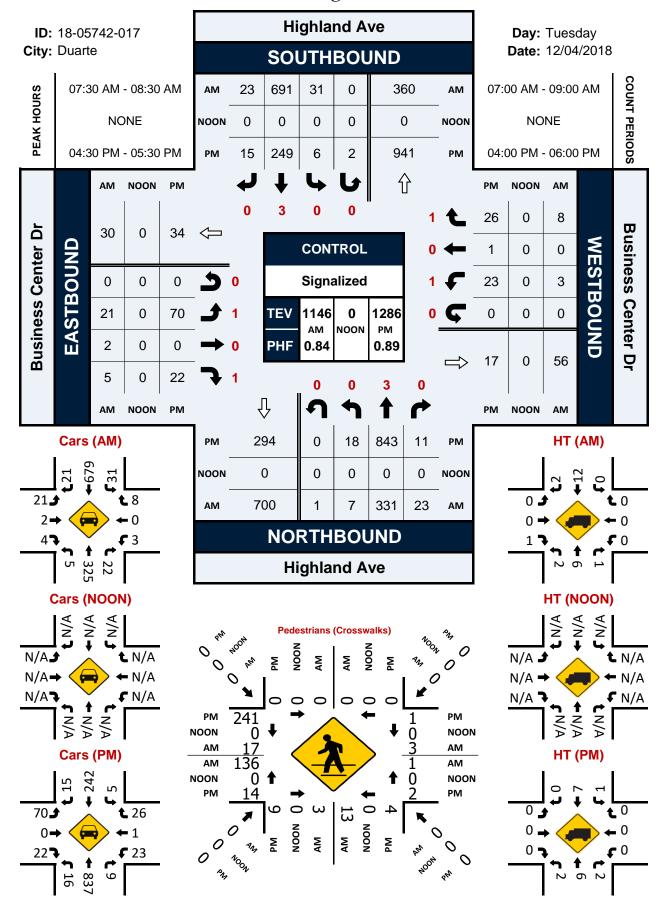

I-210 WB Off-Ramp & Central Ave

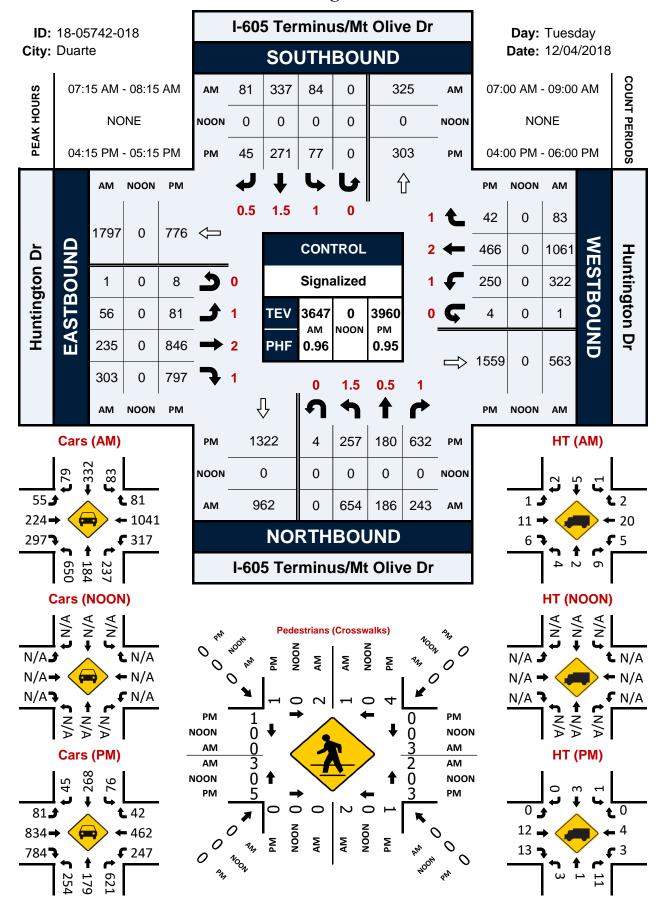

Village Rd & Duarte Rd


Duncannon Ave & Evergreen St

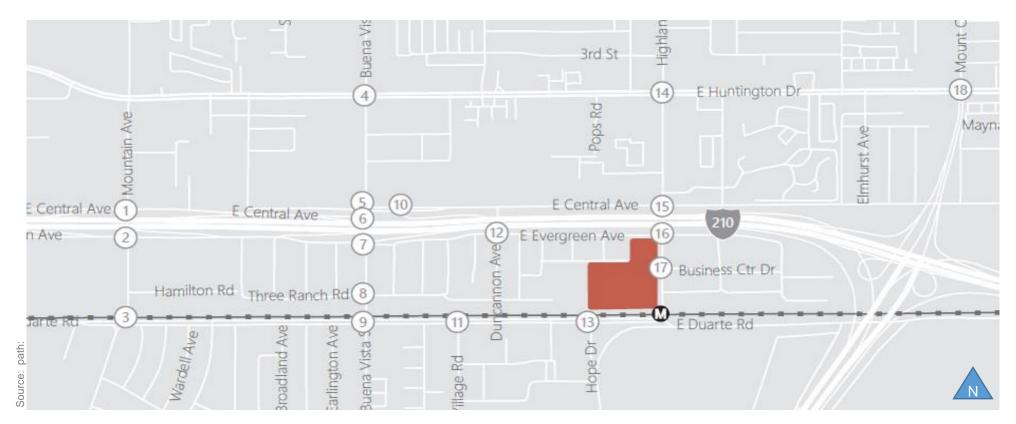

Hope Drive & Duarte Rd

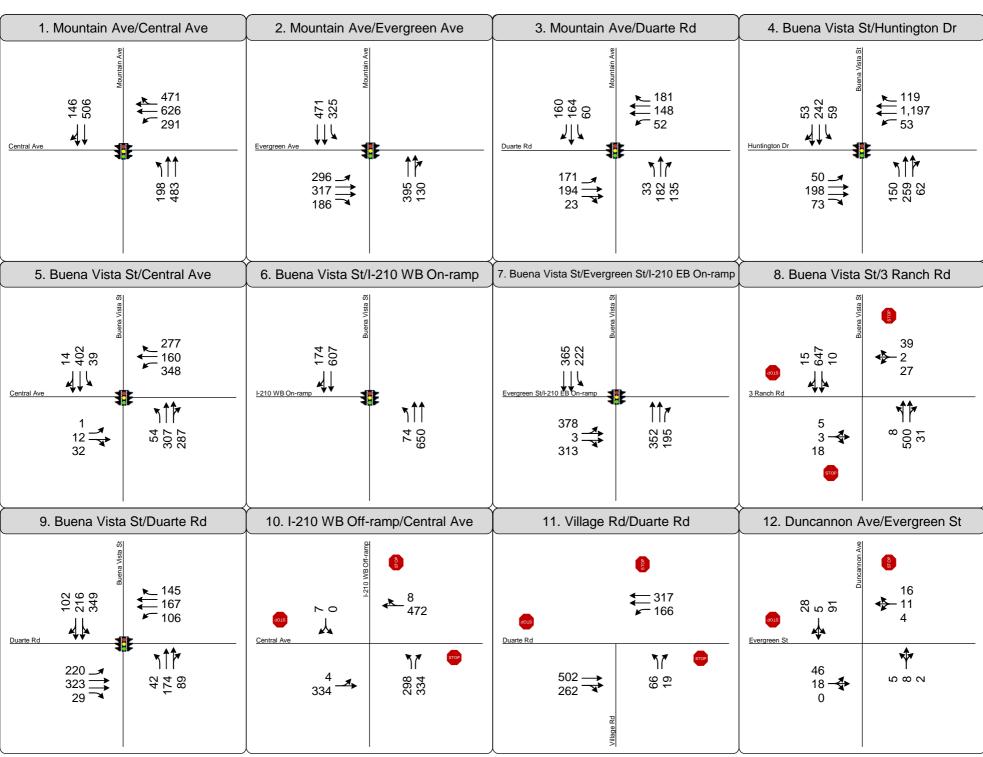

Highland Ave & Huntington Dr


Highland Ave & Central Ave

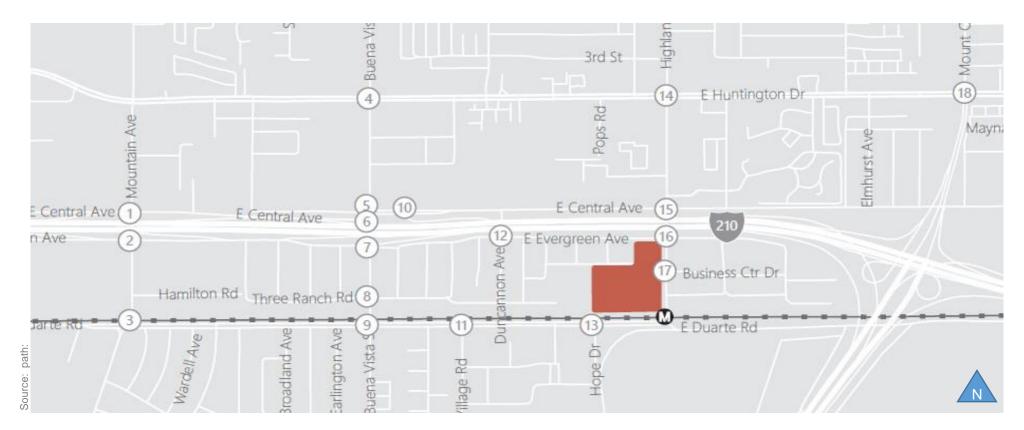

Highland Ave & Evergreen St

Highland Ave & Business Center Dr

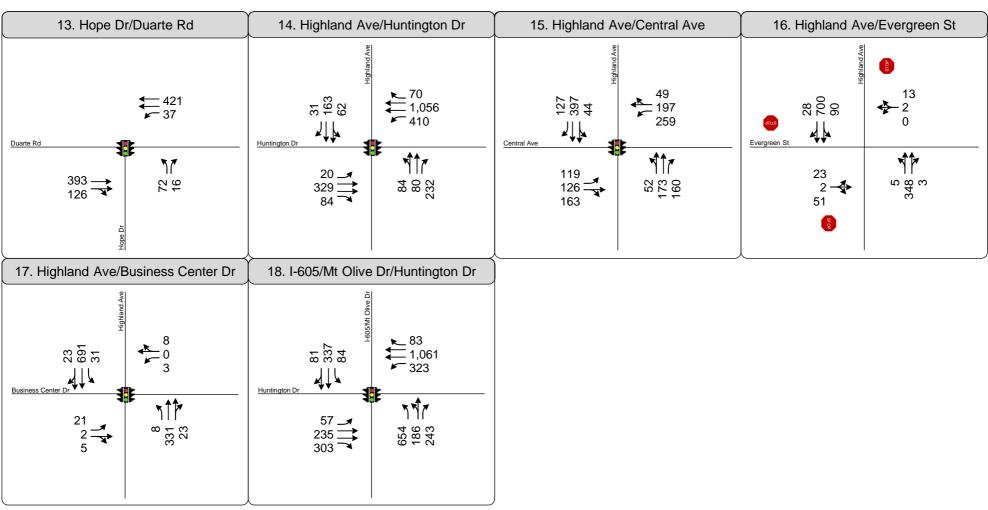
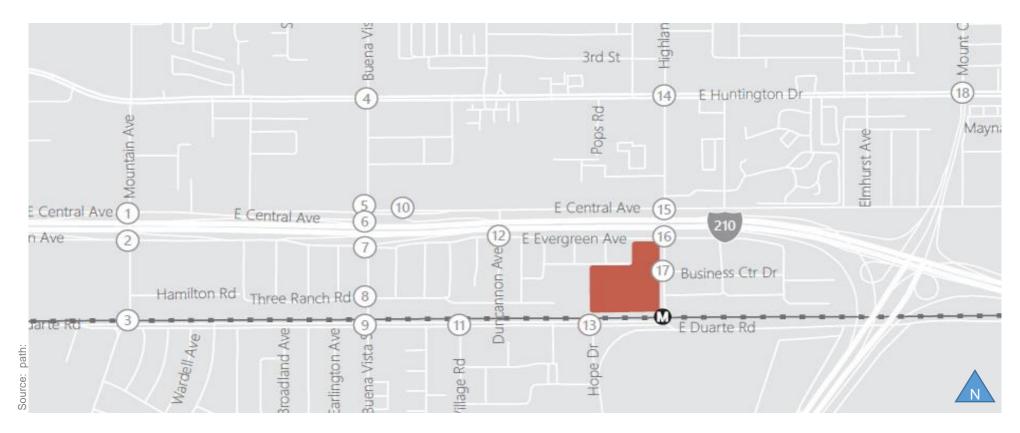
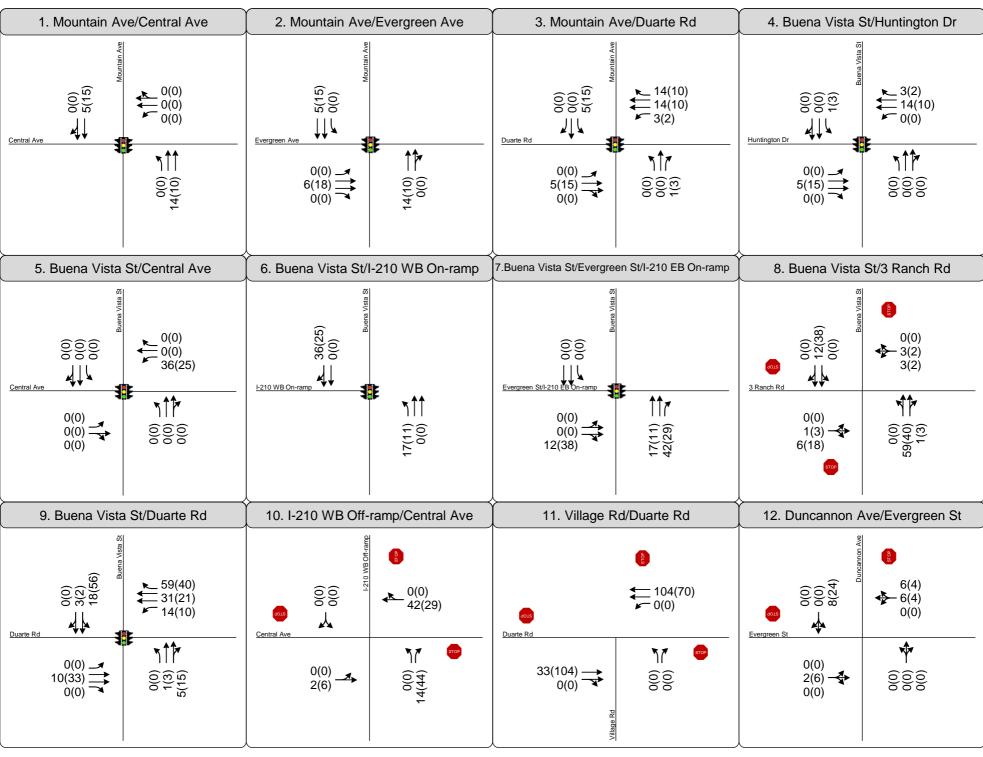


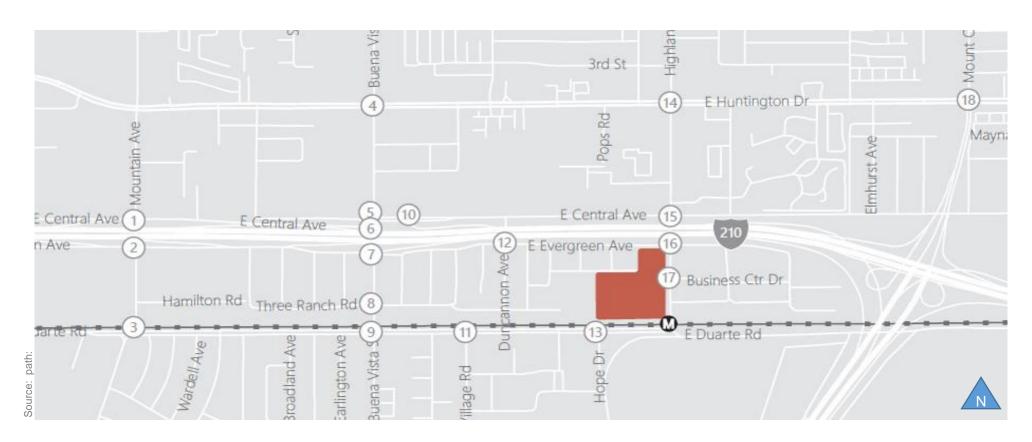

I-605 Terminus/Mt Olive Dr & Huntington Dr

APPENDIX C: LANE CONFIGURATIONS & VOLUMES



Peak Hour Traffic Volumes and Lane Configurations
Existing (2018) Conditions


Figure 1

Peak Hour Traffic Volumes and Lane Configurations
Project Only Conditions

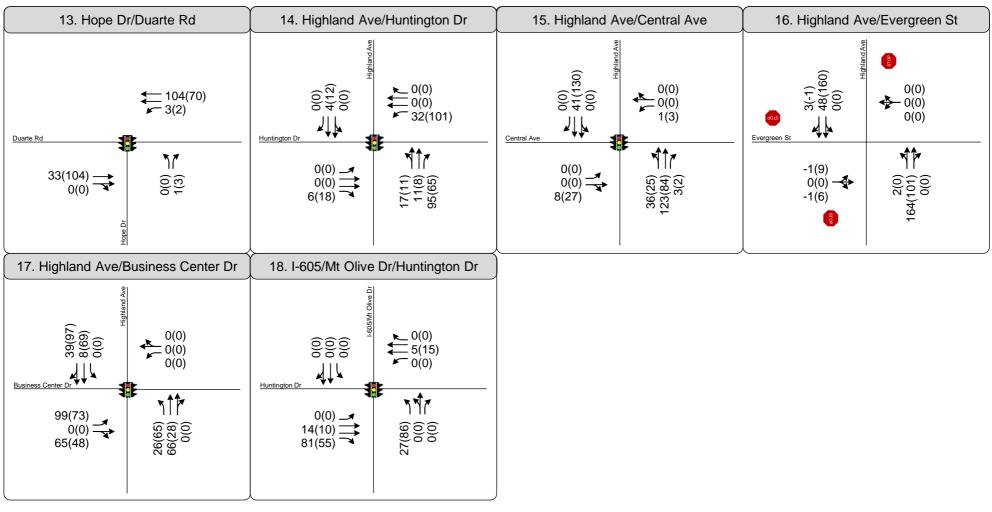
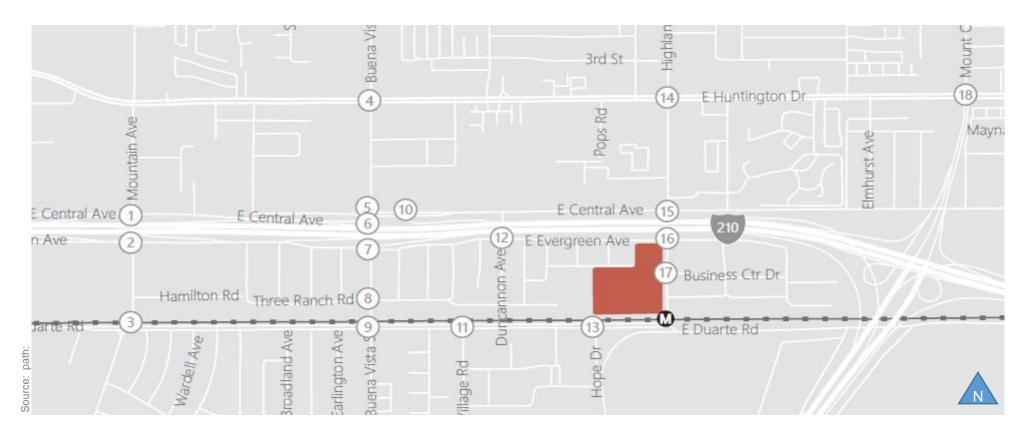



Figure 2

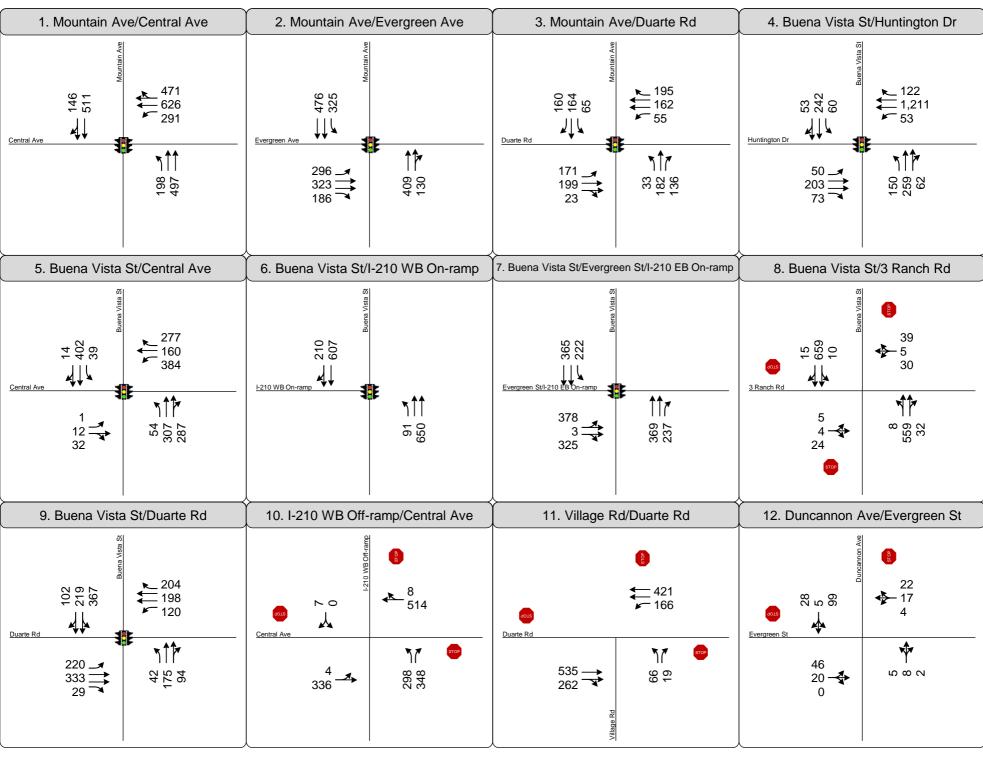
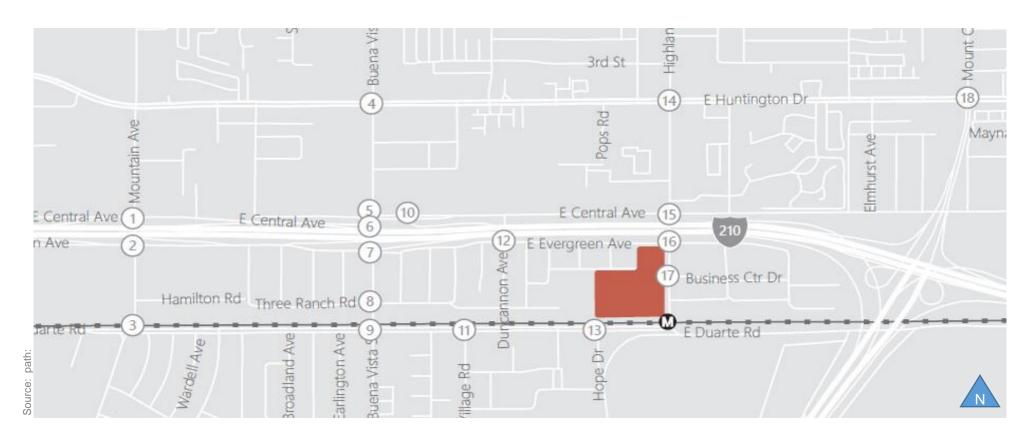



Figure 3

Peak Hour Traffic Volumes and Lane Configurations Existing (2018) plus Project Conditions

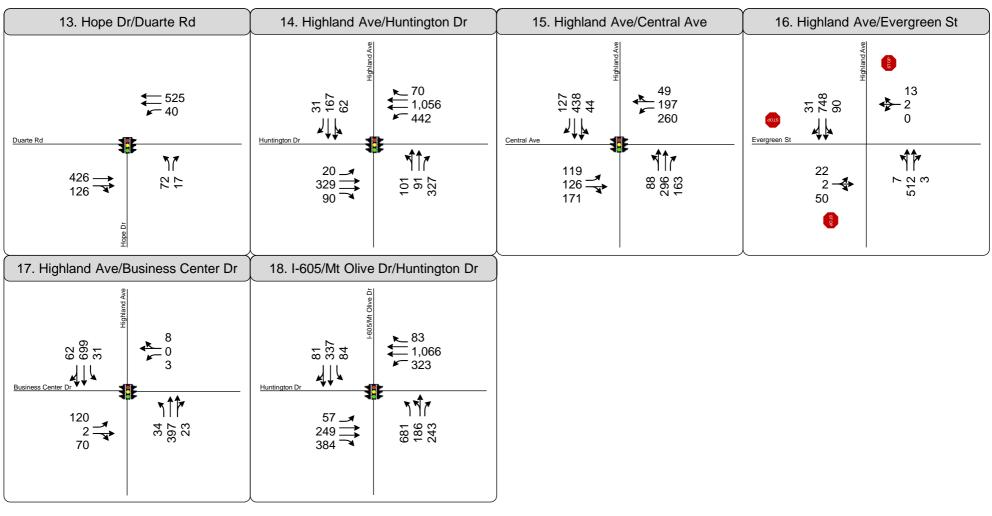
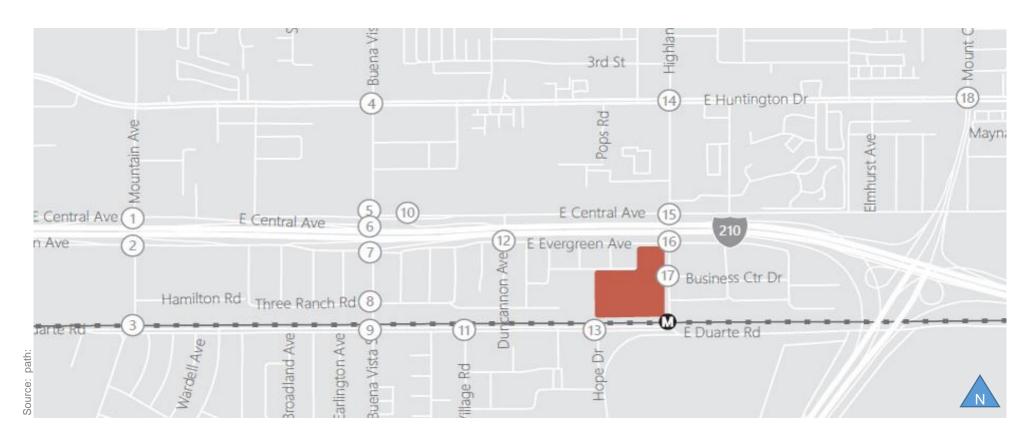
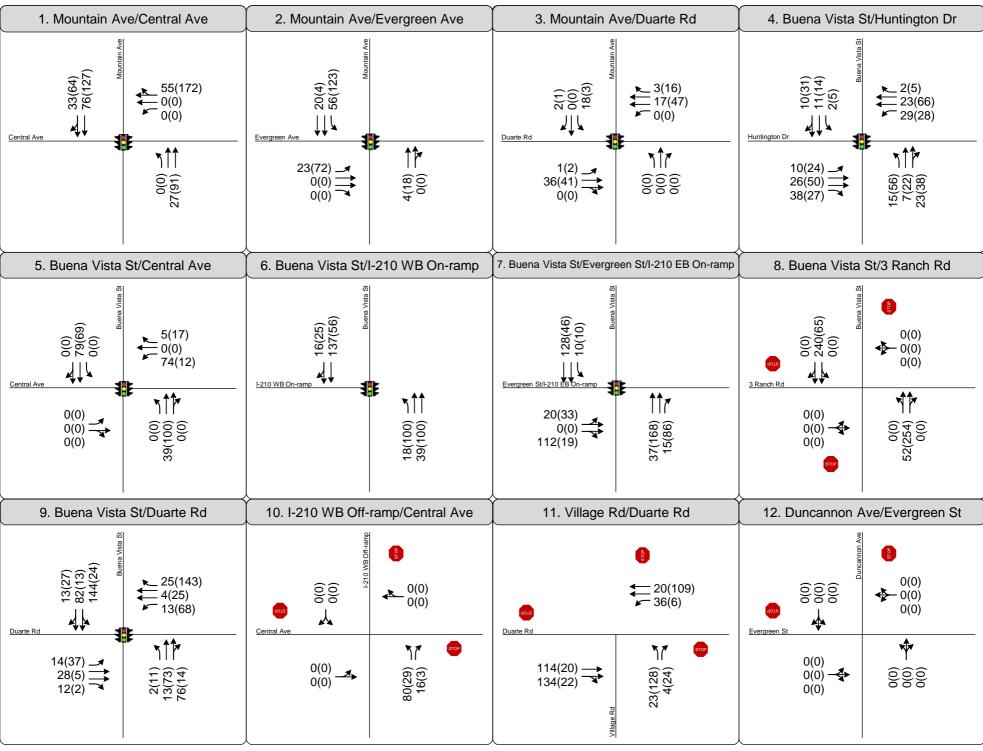
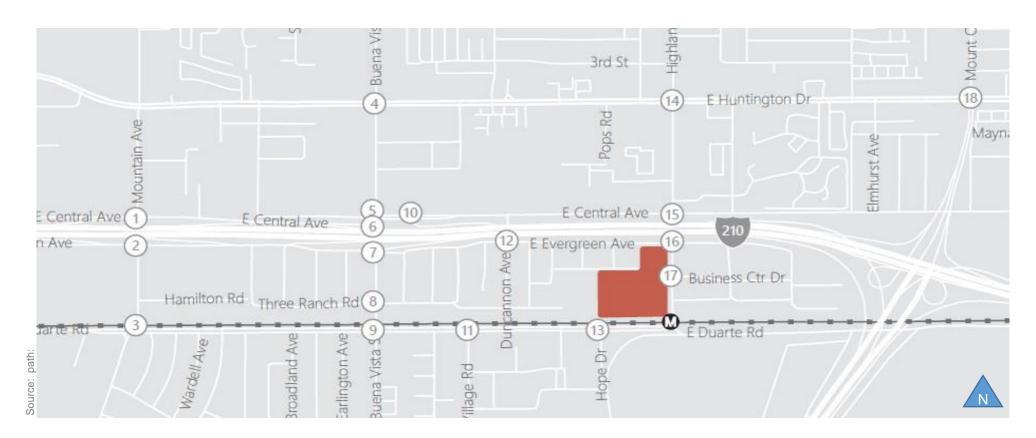
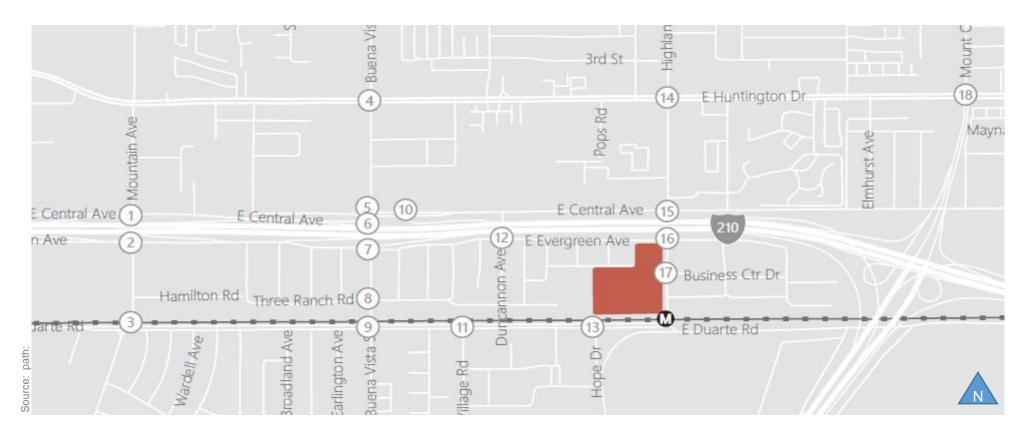
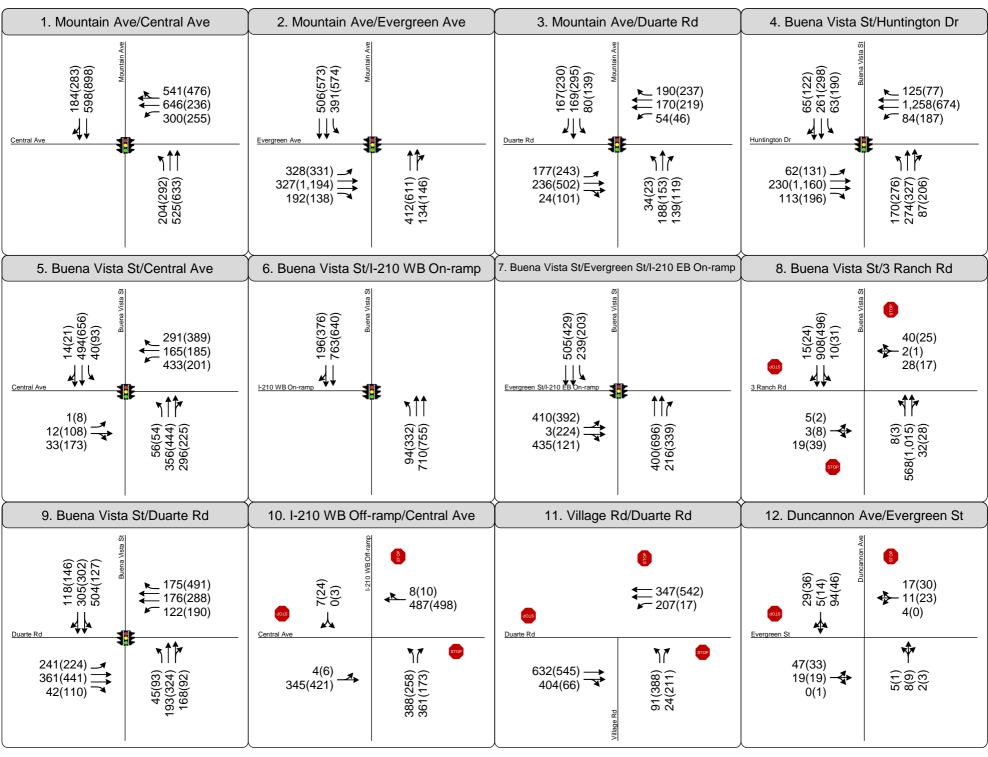
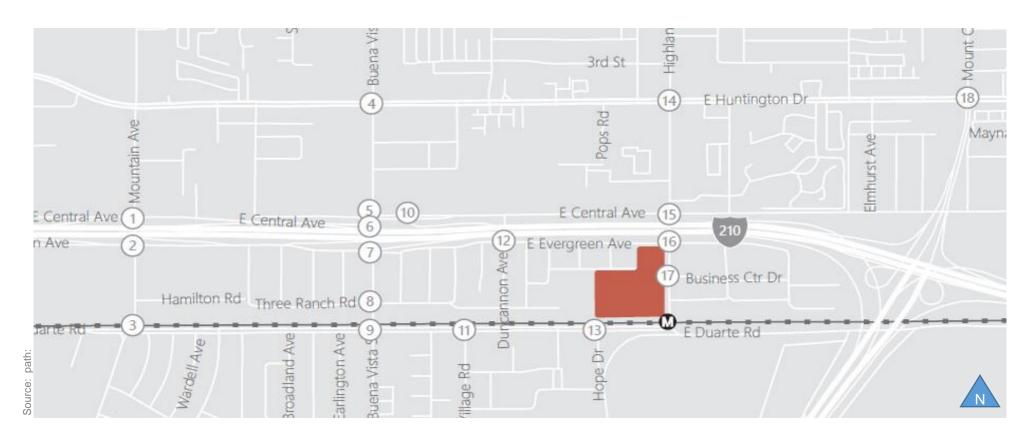




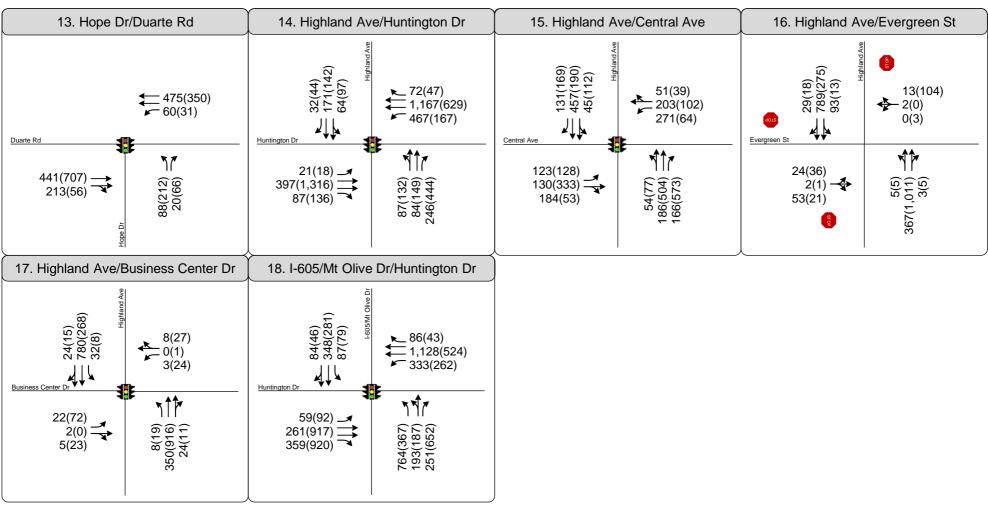
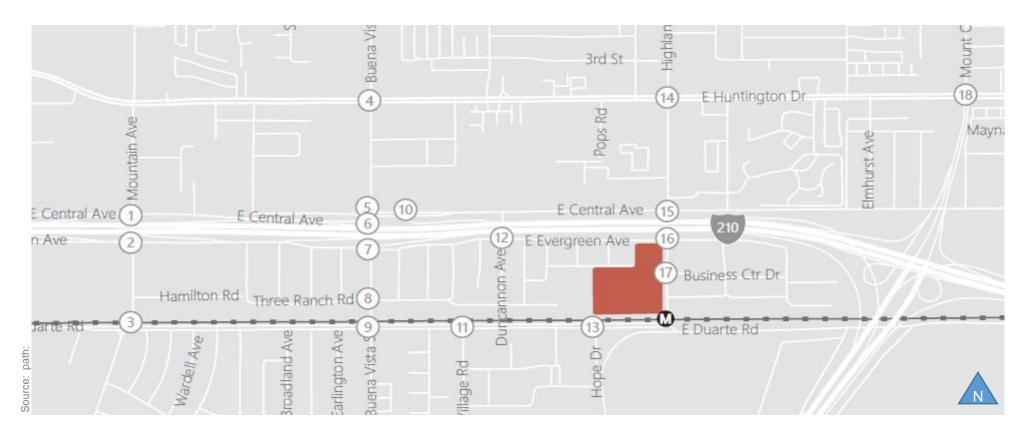
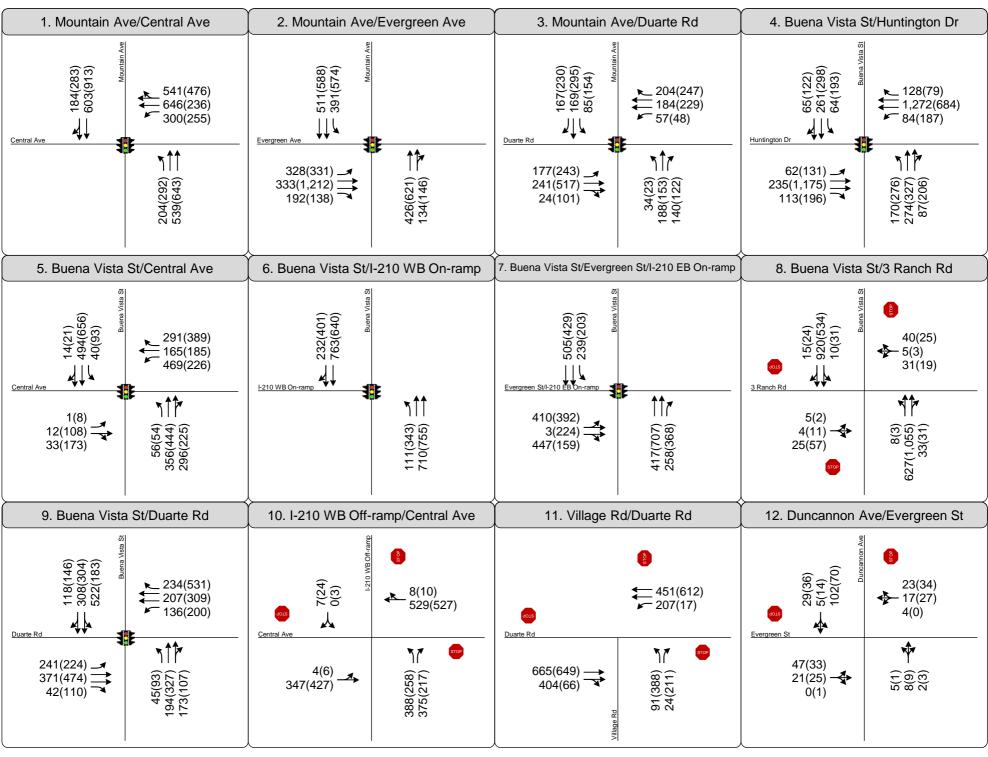
Figure 3

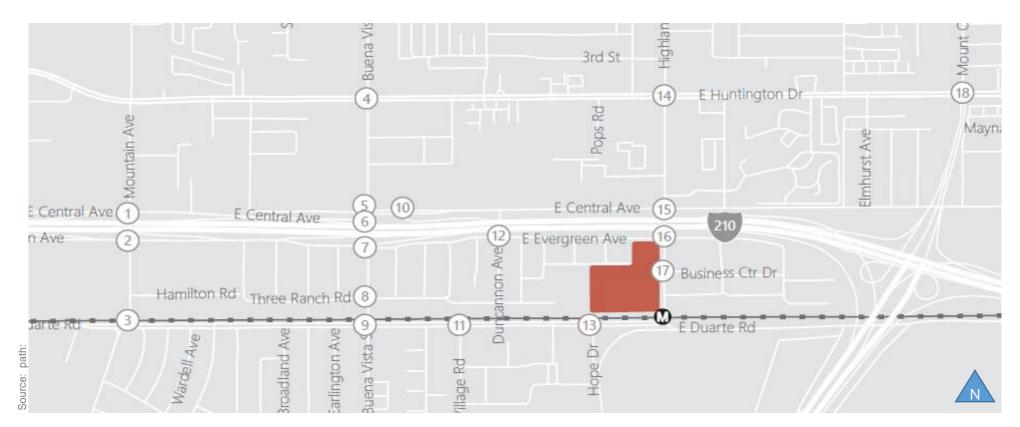
Peak Hour Traffic Volumes and Lane Configurations
Related Project Conditions


Figure 4

Peak Hour Traffic Volumes and Lane Configurations
Future Base (2025) Conditions


Figure 5

Peak Hour Traffic Volumes and Lane Configurations
Future (2025) plus Project Conditions

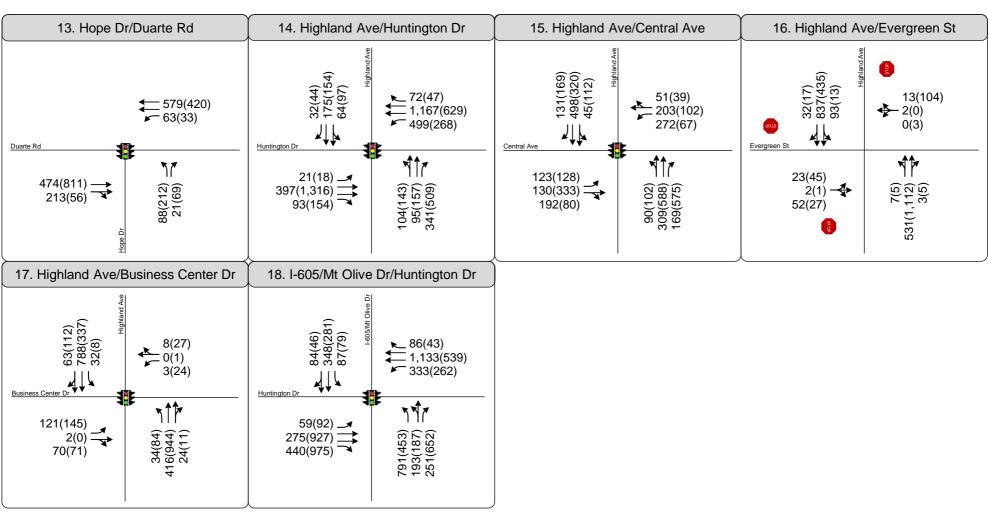


Figure 6

APPENDIX D: INTERSECTION LOS ANALYSIS

SIGNALIZED INTERSECTIONS LEVEL OF SERVICE

Intersection: 1 - Mountain Ave & Central Ave

Description: Existing

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	I YSIS
ALLINOAOLI	101 0 101 1	LANEO	VOLOIVIL	OAI AOITT	V/O	I IOO AINA	<u> </u>
Southbound	RT	0.00	146	0	0.000	N-S(1):	0.151
	TH	2.00	506	3,200	0.204 *	N-S(2):	0.328 *
	LT	0.00	0	0	0.000	E-W(1):	0.182
Westbound	RT	0.00	471	0	0.000	E-W(2):	0.343 *
	TH	2.00	626	3,200	0.343 *		
	LT	1.00	291	1,600	0.182	V/C:	0.671
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	2.00	483	3,200	0.151	ITS:	0.000
	LT	1.00	198	1,600	0.124 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.771
	TH	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	LOS:	С

Date/Time:	PM PEAK HOUR
Date/Time:	FINI FEAR DUUK

A DDD O A CLI	N 4\ /N 4T	LANEC	VOLUME	CADACITY	1//0	IOLL ANIA	1 // 010
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	212	0	0.000	N-S(1):	0.164
	TH	2.00	747	3,200	0.300 *	N-S(2):	0.477 *
	LT	0.00	0	0	0.000	E-W(1):	0.154
Westbound	RT	0.00	295	1,600	0.184 *	E-W(2):	0.184 *
	TH	2.00	229	1,600	0.143		
	LT	1.00	247	1,600	0.154	V/C:	0.661
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	2.00	525	3,200	0.164	ITS:	0.000
	LT	1.00	283	1,600	0.177 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.761
	TH	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	LOS:	С

^{* -} Denotes critical movement

Intersection: 2 - Mountain Ave & Evergreen Ave

Description: **Existing**

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 V/C Round Off (decs.): 3

ITS: 0 %

OLA Movements: FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.367 *
	TH	2.00	471	3,200	0.147	N-S(2):	0.147
	LT	1.00	325	1,600	0.203 *	E-W(1):	0.116
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.185 *
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000	V/C:	0.552
Northbound	RT	0.00	130	0	0.000	Lost Time:	0.100
	TH	2.00	395	3,200	0.164 *	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	1.00	186	1,600	0.116	ICU:	0.652
	TH	2.00	317	3,200	0.099		
	LT	1.00	296	1,600	0.185 *	LOS:	В

Date/Time:	PM PEAK HOUR
Date/Time:	PIWI PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.497 *
	TH	2.00	551	3,200	0.172	N-S(2):	0.172
	LT	1.00	437	1,600	0.273 *	E-W(1):	0.362 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.157
	TH	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	V/C:	0.859
Northbound	RT	0.00	141	0	0.000	Lost Time:	0.100
	TH	2.00	575	3,200	0.224 *	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	1.00	134	1,600	0.084	ICU:	0.959
	TH	2.00	1,157	3,200	0.362 *		
	LT	1.00	251	1,600	0.157	LOS:	E

^{* -} Denotes critical movement

Intersection: 3 - Mountain Ave & Duarte Rd

Description: Existing

RR Crossing Movements

Thru Lane: 1600 vph 1067 vph N-S Split Phase: Ν 1067 vph 1600 vph E-W Split Phase: Ν Left Lane: 10

Double Lt Penalty: 10 %

ITS: 0 % Lost Time (% of cycle):

V/C Round Off (decs.): 3

OLA Movements: SBR, WBR

FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	160	1,067	0.000	N-S(1):	0.227 *
	TH	1.00	164	1,067	0.154	N-S(2):	0.175
	LT	1.00	60	1,067	0.056 *	E-W(1):	0.101
Westbound	RT	1.00	181	1,067	0.113 *	E-W(2):	0.273 *
	TH	2.00	148	3,200	0.046		
	LT	1.00	52	1,600	0.033	V/C:	0.500
Northbound	RT	1.00	135	1,600	0.084	Lost Time:	0.100
	TH	1.00	182	1,067	0.171 *	ITS:	0.000
	LT	1.00	33	1,600	0.021		
Eastbound	RT	0.00	23	0	0.000	ICU:	0.600
	TH	2.00	194	3,200	0.068		
	LT	1.00	171	1,067	0.160 *	LOS:	Α

D = 1 = /T! = -	DM DEAK HOUD
Date/Time:	PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	1.00	222	1,067	0.000	N-S(1):	0.263
	TH	1.00	286	1,067	0.268 *	N-S(2):	0.282 *
	LT	1.00	132	1,067	0.124	E-W(1):	0.198
Westbound	RT	1.00	214	1,067	0.077 *	E-W(2):	0.296 *
	TH	2.00	167	3,200	0.052		
	LT	1.00	45	1,600	0.028	V/C:	0.578
Northbound	RT	1.00	115	1,600	0.072	Lost Time:	0.100
	TH	1.00	148	1,067	0.139	ITS:	0.000
	LT	1.00	22	1,600	0.014 *		
Eastbound	RT	0.00	98	0	0.000	ICU:	0.678
	TH	2.00	447	3,200	0.170		
	LT	1.00	234	1,067	0.219 *	LOS:	В

^{* -} Denotes critical movement

Intersection: 4 - Buena Vista St & Huntington Dr

Description: Existing

Thru Lane: 1600 vph N-S Split Phase: Ν E-W Split Phase : 1600 vph Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	ICU ANALYSIS	
Southbound	RT	0.00	53	0	0.000	N-S(1):	0.137	
	TH	2.00	242	3,200	0.092 *	N-S(2):	0.186 *	
	LT	1.00	59	1,600	0.037	E-W(1):	0.095	
Westbound	RT	1.00	119	1,600	0.056	E-W(2):	0.405 *	
	TH	2.00	1,197	3,200	0.374 *			
	LT	1.00	53	1,600	0.033	V/C:	0.591	
Northbound	RT	0.00	62	0	0.000	Lost Time:	0.100	
	TH	2.00	259	3,200	0.100	ITS:	0.000	
	LT	1.00	150	1,600	0.094 *			
Eastbound	RT	1.00	73	1,600	0.000	ICU:	0.691	
	TH	2.00	198	3,200	0.062			
	LT	1.00	50	1,600	0.031 *	LOS:	В	

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	88	0	0.000	N-S(1):	0.255 *
	TH	2.00	275	3,200	0.113	N-S(2):	0.246
	LT	1.00	179	1,600	0.112 *	E-W(1):	0.432 *
Westbound	RT	1.00	70	1,600	0.000	E-W(2):	0.249
	TH	2.00	589	3,200	0.184		
	LT	1.00	154	1,600	0.096 *	V/C:	0.687
Northbound	RT	0.00	163	0	0.000	Lost Time:	0.100
	TH	2.00	296	3,200	0.143 *	ITS:	0.000
	LT	1.00	213	1,600	0.133		
Eastbound	RT	1.00	164	1,600	0.036	ICU:	0.787
	TH	2.00	1,076	3,200	0.336 *		
	LT	1.00	104	1,600	0.065	LOS:	С

^{* -} Denotes critical movement

Intersection: 5 - Buena Vista St & Central Ave

Description: Existing

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	14	0	0.000	N-S(1):	0.210 *
	TH	2.00	402	3,200	0.130	N-S(2):	0.164
	LT	1.00	39	1,600	0.024 *	E-W(1):	0.246 *
Westbound	RT	1.00	277	1,600	0.161	E-W(2):	0.162
	TH	1.00	160	1,600	0.100		
	LT	1.00	348	1,600	0.218 *	V/C:	0.456
Northbound	RT	0.00	287	0	0.000	Lost Time:	0.100
	TH	2.00	307	3,200	0.186 *	ITS:	0.000
	LT	1.00	54	1,600	0.034		
Eastbound	RT	0.00	32	0	0.000	ICU:	0.556
	TH	1.00	12	1,600	0.028 *		
	LT	1.00	1	1,600	0.001	LOS:	Α

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	20	0	0.000	N-S(1):	0.228 *
	TH	2.00	569	3,200	0.184	N-S(2):	0.217
	LT	1.00	90	1,600	0.056 *	E-W(1):	0.285 *
Westbound	RT	1.00	360	1,600	0.197	E-W(2):	0.202
	TH	1.00	179	1,600	0.112		
	LT	1.00	183	1,600	0.114 *	V/C:	0.513
Northbound	RT	0.00	218	0	0.000	Lost Time:	0.100
	TH	2.00	333	3,200	0.172 *	ITS:	0.000
	LT	1.00	52	1,600	0.033		
Eastbound	RT	0.00	168	0	0.000	ICU:	0.613
	TH	1.00	105	1,600	0.171 *		
	LT	1.00	8	1,600	0.005	LOS:	В

^{* -} Denotes critical movement

Intersection: 6 - Buena Vista St & I-210 WB On-ramp

Description: Existing

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements :

FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
	·						
Southbound	RT	0.00	174	0	0.000	N-S(1):	0.203
	TH	2.00	607	3,200	0.244 *	N-S(2):	0.290 *
	LT	0.00	0	0	0.000	E-W(1):	0.000 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.000 *
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000 *	V/C:	0.290
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	2.00	650	3,200	0.203	ITS:	0.000
	LT	1.00	74	1,600	0.046 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.390
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000 *	LOS:	Α

Date/Time: PM PEAK	HOUR	

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	340	0	0.000	N-S(1):	0.198
	TH	2.00	566	3,200	0.283 *	N-S(2):	0.424 *
	LT	0.00	0	0	0.000	E-W(1):	0.000 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.000 *
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000 *	V/C:	0.424
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	2.00	635	3,200	0.198	ITS:	0.000
	LT	1.00	225	1,600	0.141 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.524
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000 *	LOS:	Α

^{* -} Denotes critical movement

Intersection: 7 - Buena Vista St & Evergreen St/I-210 EB On-ramp

Description: Existing

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.261 *
	TH	2.00	365	3,200	0.114	N-S(2):	0.114
	LT	1.00	222	1,600	0.139 *	E-W(1):	0.198
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.236 *
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000	V/C:	0.497
Northbound	RT	1.00	195	1,600	0.122 *	Lost Time:	0.100
	TH	2.00	352	3,200	0.110	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	0.00	313	0	0.000	ICU:	0.597
	TH	2.00	3	1,600	0.198		
	LT	0.00	378	1,600	0.236 *	LOS:	Α

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.277 *
	TH	2.00	371	3,200	0.116	N-S(2):	0.116
	LT	1.00	187	1,600	0.117 *	E-W(1):	0.198
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.218 *
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000	V/C:	0.495
Northbound	RT	1.00	245	1,600	0.153	Lost Time:	0.100
	TH	2.00	512	3,200	0.160 *	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	0.00	99	0	0.000	ICU:	0.595
	TH	2.00	217	1,600	0.198		
	LT	0.00	348	1,600	0.218 *	LOS:	Α

^{* -} Denotes critical movement

Intersection: 9 - Buena Vista St & Duarte Rd

Description: Existing

RR Crossing Movements

Thru Lane: 1600 vph 1067 vph N-S Split Phase: Υ 1067 vph E-W Split Phase : 1600 vph Ν Left Lane:

Double Lt Penalty: 10 %

ITS: 0 % Lost Time (% of cycle): 10 V/C Round Off (decs.):

3

OLA Movements: FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
			_				
Southbound	RT	0.00	102	0	0.000	N-S(1):	0.450 *
	TH	2.00	216	1,067	0.298	N-S(2):	0.000
	LT	0.00	349	1,067	0.327 *	E-W(1):	0.167
Westbound	RT	1.00	145	1,067	0.000	E-W(2):	0.258 *
	TH	2.00	167	3,200	0.052 *		
	LT	1.00	106	1,600	0.066	V/C:	0.708
Northbound	RT	0.00	89	0	0.000	Lost Time:	0.100
	TH	2.00	174	2,134	0.123 *	ITS:	0.000
	LT	1.00	42	1,600	0.026		
Eastbound	RT	1.00	29	1,600	0.005	ICU:	0.808
	TH	2.00	323	3,200	0.101		
	LT	1.00	220	1,067	0.206 *	LOS:	D

Date/Time:	PM PEAK HOUR
Date/Time:	PIWI PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	115	0	0.000	N-S(1):	0.381 *
	TH	2.00	280	1,067	0.232 *	N-S(2):	0.000
	LT	0.00	100	1,067	0.094	E-W(1):	0.206
Westbound	RT	1.00	337	1,067	0.269 *	E-W(2):	0.439 *
	TH	2.00	255	3,200	0.080		
	LT	1.00	118	1,600	0.074	V/C:	0.820
Northbound	RT	0.00	76	0	0.000	Lost Time:	0.100
	TH	2.00	243	2,134	0.149 *	ITS:	0.000
	LT	1.00	79	1,600	0.049		
Eastbound	RT	1.00	105	1,600	0.041	ICU:	0.920
	TH	2.00	422	3,200	0.132		
	LT	1.00	181	1,067	0.170 *	LOS:	E

^{* -} Denotes critical movement

Intersection: 13 - Hope Dr & Duarte Rd

Description: Existing

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
		·					
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.000
	TH	0.00	0	0	0.000 *	N-S(2):	0.045 *
	LT	0.00	0	0	0.000	E-W(1):	0.185 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.132
	TH	2.00	421	3,200	0.132		
	LT	1.00	37	1,600	0.023 *	V/C:	0.230
Northbound	RT	1.00	16	1,600	0.000	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	72	1,600	0.045 *		
Eastbound	RT	0.00	126	0	0.000	ICU:	0.330
	TH	2.00	393	3,200	0.162 *		
	LT	0.00	0	0	0.000	LOS:	Α

Date/Time: PM	1	PE	٩N	н	U	U	ĸ	

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.023
	TH	0.00	0	0	0.000 *	N-S(2):	0.081 *
	LT	0.00	0	0	0.000	E-W(1):	0.234 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.095
	TH	2.00	304	3,200	0.095		
	LT	1.00	26	1,600	0.016 *	V/C:	0.315
Northbound	RT	1.00	49	1,600	0.023	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	129	1,600	0.081 *		
Eastbound	RT	0.00	41	0	0.000	ICU:	0.415
	TH	2.00	656	3,200	0.218 *		
	LT	0.00	0	0	0.000	LOS:	Α

^{* -} Denotes critical movement

Intersection: 14 - Highland Ave & Huntington Dr

Description: Existing

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	1.00	31	1,600	0.013	N-S(1):	0.090
	TH	2.00	163	3,200	0.040 *	N-S(2):	0.093 *
	LT	0.00	62	1,600	0.039	E-W(1):	0.359 *
Westbound	RT	1.00	70	1,600	0.024	E-W(2):	0.343
	TH	2.00	1,056	3,200	0.330	, ,	
	LT	1.00	410	1,600	0.256 *	V/C:	0.452
Northbound	RT	1.00	232	1,600	0.017	Lost Time:	0.100
	TH	2.00	80	3,200	0.051	ITS:	0.000
	LT	0.00	84	1,600	0.053 *		
Eastbound	RT	1.00	84	1,600	0.026	ICU:	0.552
	TH	2.00	329	3,200	0.103 *		
	LT	1.00	20	1,600	0.013	LOS:	Α
				•			

Date/Time:	PM PEAK HOUR
Date/Time:	PIWI PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	I VSIS
AFFROACH	IVI V IVI I	LANLS	VOLUME	CAFACITI	V/C	T ICO AINA	L1313
Southbound	RT	1.00	43	1,600	0.022	N-S(1):	0.256 *
	TH	2.00	137	3,200	0.043	N-S(2):	0.123
	LT	0.00	94	1,600	0.059 *	E-W(1):	0.465 *
Westbound	RT	1.00	46	1,600	0.000	E-W(2):	0.161
	TH	2.00	481	3,200	0.150		
	LT	1.00	155	1,600	0.097 *	V/C:	0.721
Northbound	RT	1.00	392	1,600	0.197 *	Lost Time:	0.100
	TH	2.00	141	3,200	0.084	ITS:	0.000
	LT	0.00	128	1,600	0.080		
Eastbound	RT	1.00	132	1,600	0.043	ICU:	0.821
	TH	2.00	1,176	3,200	0.368 *		
	LT	1.00	17	1,600	0.011	LOS:	D

^{* -} Denotes critical movement

Intersection: 15 - Highland Ave & Central Ave

Description: Existing

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements :

FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	ICU ANALYSIS	
Southbound	RT	1.00	127	1,600	0.042	N-S(1):	0.088	
	TH	2.00	397	3,200	0.089 *	N-S(2):	0.122 *	
	LT	0.00	44	1,600	0.028	E-W(1):	0.343 *	
Westbound	RT	0.00	49	0	0.000	E-W(2):	0.228	
	TH	1.00	197	1,600	0.154			
	LT	1.00	259	1,600	0.162 *	V/C:	0.465	
Northbound	RT	1.00	160	1,600	0.019	Lost Time:	0.100	
	TH	2.00	173	3,200	0.060	ITS:	0.000	
	LT	0.00	52	1,600	0.033 *			
Eastbound	RT	0.00	163	0	0.000	ICU:	0.565	
	TH	1.00	126	1,600	0.181 *			
	LT	1.00	119	1,600	0.074	LOS:	Α	

Data/Times	PM PEAK HOUR
Date/Time:	FINI FEAN HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	164	1,600	0.064	N-S(1):	0.393 *
	TH	2.00	176	3,200	0.070	N-S(2):	0.117
	LT	0.00	109	1,600	0.068 *	E-W(1):	0.270 *
Westbound	RT	0.00	38	0	0.000	E-W(2):	0.164
	TH	1.00	99	1,600	0.086		
	LT	1.00	61	1,600	0.038 *	V/C:	0.663
Northbound	RT	1.00	551	1,600	0.325 *	Lost Time:	0.100
	TH	2.00	448	3,200	0.163	ITS:	0.000
	LT	0.00	75	1,600	0.047		
Eastbound	RT	0.00	48	0	0.000	ICU:	0.763
	TH	1.00	323	1,600	0.232 *		
	LT	1.00	124	1,600	0.078	LOS:	С

^{* -} Denotes critical movement

Intersection: 17 - Highland Ave & Business Center Dr

Description: Existing

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Υ Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 V/C Round Off (decs.): 3

ITS: 0 %

OLA Movements: FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	23	0	0.000	N-S(1):	0.130
	TH	2.00	691	3,200	0.223 *	N-S(2):	0.228 *
	LT	1.00	31	1,600	0.019	E-W(1):	0.018 *
Westbound	RT	0.00	8	0	0.000	E-W(2):	0.000
	TH	1.00	0	1,600	0.005 *	, ,	
	LT	1.00	3	1,600	0.002	V/C:	0.246
Northbound	RT	0.00	23	0	0.000	Lost Time:	0.100
	TH	2.00	331	3,200	0.111	ITS:	0.000
	LT	1.00	8	1,600	0.005 *		
Eastbound	RT	0.00	5	0	0.000	ICU:	0.346
	TH	1.00	2	1,600	0.004		
	LT	1.00	21	1,600	0.013 *	LOS:	Α
				•			

Data/Times	PM PEAK HOUR
Date/Time:	FINI FEAN HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	15	0	0.000	N-S(1):	0.272 *
	TH	2.00	249	3,200	0.083	N-S(2):	0.094
	LT	1.00	8	1,600	0.005 *	E-W(1):	0.061 *
Westbound	RT	0.00	26	0	0.000	E-W(2):	0.000
	TH	1.00	1	1,600	0.017 *		
	LT	1.00	23	1,600	0.014	V/C:	0.333
Northbound	RT	0.00	11	0	0.000	Lost Time:	0.100
	TH	2.00	843	3,200	0.267 *	ITS:	0.000
	LT	1.00	18	1,600	0.011		
Eastbound	RT	0.00	22	0	0.000	ICU:	0.433
	TH	1.00	0	1,600	0.014		
	LT	1.00	70	1,600	0.044 *	LOS:	Α

^{* -} Denotes critical movement

Intersection: 18 - I-605/Mt Olive Dr & Huntington Dr

Description: Existing

Thru Lane: 1600 vph N-S Split Phase: Υ E-W Split Phase : 1600 vph Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements :

FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	81	0	0.000	N-S(1):	0.423 *
	TH	2.00	337	3,200	0.131 *	N-S(2):	0.000
	LT	1.00	84	1,600	0.053	E-W(1):	0.275
Westbound	RT	1.00	83	1,600	0.026	E-W(2):	0.368 *
	TH	2.00	1,061	3,200	0.332 *		
	LT	1.00	323	1,600	0.202	V/C:	0.791
Northbound	RT	1.00	243	1,600	0.051	Lost Time:	0.100
	TH	0.44	186	709	0.263	ITS:	0.000
	LT	1.56	654	2,242	0.292 *		
Eastbound	RT	1.00	303	1,600	0.044	ICU:	0.891
	TH	2.00	235	3,200	0.073		
	LT	1.00	57	1,600	0.036 *	LOS:	D

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	45	0	0.000	N-S(1):	0.415 *
	TH	2.00	271	3,200	0.099 *	N-S(2):	0.000
	LT	1.00	77	1,600	0.048	E-W(1):	0.581 *
Westbound	RT	1.00	42	1,600	0.002	E-W(2):	0.202
	TH	2.00	466	3,200	0.146		
	LT	1.00	254	1,600	0.159 *	V/C:	0.996
Northbound	RT	1.00	632	1,600	0.316 *	Lost Time:	0.100
	TH	0.82	180	1,306	0.138	ITS:	0.000
	LT	1.18	261	1,704	0.153		
Eastbound	RT	1.00	797	1,600	0.422 *	ICU:	1.096
	TH	2.00	846	3,200	0.264		
	LT	1.00	89	1,600	0.056	LOS:	F

^{* -} Denotes critical movement

Intersection: 1 - Mountain Ave & Central Ave

Description: Existing plus Project

Thru Lane: 1600 vph N-S Split Phase: Ν E-W Split Phase : 1600 vph Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	I YSIS
ALLINOACII	101 0 101 1	LANCO	VOLOIVIL	OAI AOITT	V/C	I IOO AINA	
Southbound	RT	0.00	146	0	0.000	N-S(1):	0.155
	TH	2.00	511	3,200	0.205 *	N-S(2):	0.329 *
	LT	0.00	0	0	0.000	E-W(1):	0.182
Westbound	RT	0.00	471	0	0.000	E-W(2):	0.343 *
	TH	2.00	626	3,200	0.343 *		
	LT	1.00	291	1,600	0.182	V/C:	0.672
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	2.00	497	3,200	0.155	ITS:	0.000
	LT	1.00	198	1,600	0.124 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.772
	TH	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	LOS:	С

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	212	0	0.000	N-S(1):	0.167
	TH	2.00	762	3,200	0.304 *	N-S(2):	0.481 *
	LT	0.00	0	0	0.000	E-W(1):	0.154
Westbound	RT	0.00	295	1,600	0.184 *	E-W(2):	0.184 *
	TH	2.00	229	1,600	0.143		
	LT	1.00	247	1,600	0.154	V/C:	0.665
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	2.00	535	3,200	0.167	ITS:	0.000
	LT	1.00	283	1,600	0.177 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.765
	TH	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	LOS:	С

^{* -} Denotes critical movement

Intersection: 2 - Mountain Ave & Evergreen Ave

Description: Existing plus Project

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.371 *
	TH	2.00	476	3,200	0.149	N-S(2):	0.149
	LT	1.00	325	1,600	0.203 *	E-W(1):	0.116
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.185 *
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000	V/C:	0.556
Northbound	RT	0.00	130	0	0.000	Lost Time:	0.100
	TH	2.00	409	3,200	0.168 *	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	1.00	186	1,600	0.116	ICU:	0.656
	TH	2.00	323	3,200	0.101		
	LT	1.00	296	1,600	0.185 *	LOS:	В

Data/Times	PM PEAK HOUR
Date/Time:	PIVI PEAN HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.500 *
	TH	2.00	566	3,200	0.177	N-S(2):	0.177
	LT	1.00	437	1,600	0.273 *	E-W(1):	0.367 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.157
	TH	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	V/C:	0.867
Northbound	RT	0.00	141	0	0.000	Lost Time:	0.100
	TH	2.00	585	3,200	0.227 *	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	1.00	134	1,600	0.084	ICU:	0.967
	TH	2.00	1,175	3,200	0.367 *		
	LT	1.00	251	1,600	0.157	LOS:	E

^{* -} Denotes critical movement

Intersection: 3 - Mountain Ave & Duarte Rd

Description: **Existing plus Project**

RR Crossing Movements

1600 vph 1067 vph N-S Split Phase: Thru Lane: Ν 1067 vph 1600 vph E-W Split Phase: Ν Left Lane: 10

Double Lt Penalty: 10 %

ITS: 0 % Lost Time (% of cycle): V/C Round Off (decs.):

3

OLA Movements: SBR, WBR

FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	1.00	160	1,067	0.000	N-S(1):	0.232 *
	TH	1.00	164	1,067	0.154	N-S(2):	0.175
	LT	1.00	65	1,067	0.061 *	E-W(1):	0.103
Westbound	RT	1.00	195	1,067	0.122 *	E-W(2):	0.282 *
	TH	2.00	162	3,200	0.051		
	LT	1.00	55	1,600	0.034	V/C:	0.514
Northbound	RT	1.00	136	1,600	0.085	Lost Time:	0.100
	TH	1.00	182	1,067	0.171 *	ITS:	0.000
	LT	1.00	33	1,600	0.021		
Eastbound	RT	0.00	23	0	0.000	ICU:	0.614
	TH	2.00	199	3,200	0.069		
	LT	1.00	171	1,067	0.160 *	LOS:	В

Date/Time:	PM PEAK HOUR
Date/Time:	PINI PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	1.00	222	1,067	0.000	N-S(1):	0.277
	TH	1.00	286	1,067	0.268 *	N-S(2):	0.282 *
	LT	1.00	147	1,067	0.138	E-W(1):	0.204
Westbound	RT	1.00	224	1,067	0.072 *	E-W(2):	0.291 *
	TH	2.00	177	3,200	0.055		
	LT	1.00	47	1,600	0.029	V/C:	0.573
Northbound	RT	1.00	118	1,600	0.074	Lost Time:	0.100
	TH	1.00	148	1,067	0.139	ITS:	0.000
	LT	1.00	22	1,600	0.014 *		
Eastbound	RT	0.00	98	0	0.000	ICU:	0.673
	TH	2.00	462	3,200	0.175		
	LT	1.00	234	1,067	0.219 *	LOS:	В

^{* -} Denotes critical movement

Intersection: 4 - Buena Vista St & Huntington Dr

Description: Existing plus Project

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	53	0	0.000	N-S(1):	0.138
	TH	2.00	242	3,200	0.092 *	N-S(2):	0.186 *
	LT	1.00	60	1,600	0.038	E-W(1):	0.096
Westbound	RT	1.00	122	1,600	0.058	E-W(2):	0.409 *
	TH	2.00	1,211	3,200	0.378 *		
	LT	1.00	53	1,600	0.033	V/C:	0.595
Northbound	RT	0.00	62	0	0.000	Lost Time:	0.100
	TH	2.00	259	3,200	0.100	ITS:	0.000
	LT	1.00	150	1,600	0.094 *		
Eastbound	RT	1.00	73	1,600	0.000	ICU:	0.695
	TH	2.00	203	3,200	0.063		
	LT	1.00	50	1,600	0.031 *	LOS:	В
				•			

Date/Time:	PM	PEAR	(но	UR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	88	0	0.000	N-S(1):	0.257 *
	TH	2.00	275	3,200	0.113	N-S(2):	0.246
	LT	1.00	182	1,600	0.114 *	E-W(1):	0.437 *
Westbound	RT	1.00	72	1,600	0.000	E-W(2):	0.252
	TH	2.00	599	3,200	0.187		
	LT	1.00	154	1,600	0.096 *	V/C:	0.694
Northbound	RT	0.00	163	0	0.000	Lost Time:	0.100
	TH	2.00	296	3,200	0.143 *	ITS:	0.000
	LT	1.00	213	1,600	0.133		
Eastbound	RT	1.00	164	1,600	0.036	ICU:	0.794
	TH	2.00	1,091	3,200	0.341 *		
	LT	1.00	104	1,600	0.065	LOS:	С

^{* -} Denotes critical movement

Intersection: 5 - Buena Vista St & Central Ave

Description: Existing plus Project

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	14	0	0.000	N-S(1):	0.210 *
	TH	2.00	402	3,200	0.130	N-S(2):	0.164
	LT	1.00	39	1,600	0.024 *	E-W(1):	0.268 *
Westbound	RT	1.00	277	1,600	0.161	E-W(2):	0.162
	TH	1.00	160	1,600	0.100		
	LT	1.00	384	1,600	0.240 *	V/C:	0.478
Northbound	RT	0.00	287	0	0.000	Lost Time:	0.100
	TH	2.00	307	3,200	0.186 *	ITS:	0.000
	LT	1.00	54	1,600	0.034		
Eastbound	RT	0.00	32	0	0.000	ICU:	0.578
	TH	1.00	12	1,600	0.028 *		
	LT	1.00	1	1,600	0.001	LOS:	Α
				·			

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	20	0	0.000	N-S(1):	0.228 *
	TH	2.00	569	3,200	0.184	N-S(2):	0.217
	LT	1.00	90	1,600	0.056 *	E-W(1):	0.301 *
Westbound	RT	1.00	360	1,600	0.197	E-W(2):	0.202
	TH	1.00	179	1,600	0.112		
	LT	1.00	208	1,600	0.130 *	V/C:	0.529
Northbound	RT	0.00	218	0	0.000	Lost Time:	0.100
	TH	2.00	333	3,200	0.172 *	ITS:	0.000
	LT	1.00	52	1,600	0.033		
Eastbound	RT	0.00	168	0	0.000	ICU:	0.629
	TH	1.00	105	1,600	0.171 *		
	LT	1.00	8	1,600	0.005	LOS:	В

^{* -} Denotes critical movement

Intersection: 6 - Buena Vista St & I-210 WB On-ramp

Description: Existing plus Project

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	ı vele
AFFRUACH	IVI V IVI I	LAINES	VOLUME	CAPACITI	V/C	ICU ANA	LISIS
Southbound	RT	0.00	210	0	0.000	N-S(1):	0.203
	TH	2.00	607	3,200	0.255 *	N-S(2):	0.312 *
	LT	0.00	0	0	0.000	E-W(1):	0.000 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.000 *
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000 *	V/C:	0.312
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	2.00	650	3,200	0.203	ITS:	0.000
	LT	1.00	91	1,600	0.057 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.412
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000 *	LOS:	Α

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	365	0	0.000	N-S(1):	0.198
	TH	2.00	566	3,200	0.291 *	N-S(2):	0.439 *
	LT	0.00	0	0	0.000	E-W(1):	0.000 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.000 *
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000 *	V/C:	0.439
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	2.00	635	3,200	0.198	ITS:	0.000
	LT	1.00	236	1,600	0.148 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.539
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000 *	LOS:	Α

^{* -} Denotes critical movement

Intersection: 7 - Buena Vista St & Evergreen St/I-210 EB On-ramp

Description: Existing plus Project

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Cauthhan and	DT	0.00	0	0	0.000	NI C(4).	0.007 *
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.287 *
	TH	2.00	365	3,200	0.114	N-S(2):	0.114
	LT	1.00	222	1,600	0.139 *	E-W(1):	0.205
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.236 *
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000	V/C:	0.523
Northbound	RT	1.00	237	1,600	0.148 *	Lost Time:	0.100
	TH	2.00	369	3,200	0.115	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	0.00	325	0	0.000	ICU:	0.623
	TH	2.00	3	1,600	0.205		
	LT	0.00	378	1,600	0.236 *	LOS:	В
	LI	0.00	370	1,000	0.230	[[03.	ט

Data/Tima:	PM PEAK HOUR
Date/Time:	PINI PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.288 *
	TH	2.00	371	3,200	0.116	N-S(2):	0.116
	LT	1.00	187	1,600	0.117 *	E-W(1):	0.219 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.218
	TH	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	V/C:	0.507
Northbound	RT	1.00	274	1,600	0.171 *	Lost Time:	0.100
	TH	2.00	523	3,200	0.163	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	0.00	137	0	0.000	ICU:	0.607
	TH	2.00	217	1,600	0.219 *		
	LT	0.00	348	1,600	0.218	LOS:	В

^{* -} Denotes critical movement

Intersection: 9 - Buena Vista St & Duarte Rd

Description: Existing plus Project

RR Crossing Movements

Thru Lane: 1600 vph 1067 vph N-S Split Phase: Y
Left Lane: 1600 vph 1067 vph E-W Split Phase: N

Double Lt Penalty: 10 %

ITS: 0 %

Lost Time (% of cycle): 10 V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	102	0	0.000	N-S(1):	0.470 *
	TH	2.00	219	1,067	0.301	N-S(2):	0.000
	LT	0.00	367	1,067	0.344 *	E-W(1):	0.179
Westbound	RT	1.00	204	1,067	0.019	E-W(2):	0.268 *
	TH	2.00	198	3,200	0.062 *		
	LT	1.00	120	1,600	0.075	V/C:	0.738
Northbound	RT	0.00	94	0	0.000	Lost Time:	0.100
	TH	2.00	175	2,134	0.126 *	ITS:	0.000
	LT	1.00	42	1,600	0.026		
Eastbound	RT	1.00	29	1,600	0.005	ICU:	0.838
	TH	2.00	333	3,200	0.104		
	LT	1.00	220	1,067	0.206 *	LOS:	D

Date/Time:	PM PEAK HOUR
Date/Time:	PIW PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	115	0	0.000	N-S(1):	0.417 *
	TH	2.00	282	1,067	0.259 *	N-S(2):	0.000
	LT	0.00	156	1,067	0.146	E-W(1):	0.222
Westbound	RT	1.00	377	1,067	0.280 *	E-W(2):	0.450 *
	TH	2.00	276	3,200	0.086		
	LT	1.00	128	1,600	0.080	V/C:	0.867
Northbound	RT	0.00	91	0	0.000	Lost Time:	0.100
	TH	2.00	246	2,134	0.158 *	ITS:	0.000
	LT	1.00	79	1,600	0.049		
Eastbound	RT	1.00	105	1,600	0.041	ICU:	0.967
	TH	2.00	455	3,200	0.142		
	LT	1.00	181	1,067	0.170 *	LOS:	Е
							ĺ

^{* -} Denotes critical movement

13 - Hope Dr & Duarte Rd Intersection: **Existing plus Project** Description:

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 V/C Round Off (decs.): 3

ITS: 0 %

OLA Movements: FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.000
	TH	0.00	0	0	0.000 *	N-S(2):	0.045 *
	LT	0.00	0	0	0.000	E-W(1):	0.198 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.164
	TH	2.00	525	3,200	0.164		
	LT	1.00	40	1,600	0.025 *	V/C:	0.243
Northbound	RT	1.00	17	1,600	0.000	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	72	1,600	0.045 *		
Eastbound	RT	0.00	126	0	0.000	ICU:	0.343
	TH	2.00	426	3,200	0.173 *		
	LT	0.00	0	0	0.000	LOS:	Α

Data/Times	DM DEAK HOUD
Date/Time:	PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.024
	TH	0.00	0	0	0.000 *	N-S(2):	0.081 *
	LT	0.00	0	0	0.000	E-W(1):	0.268 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.117
	TH	2.00	374	3,200	0.117		
	LT	1.00	28	1,600	0.018 *	V/C:	0.349
Northbound	RT	1.00	52	1,600	0.024	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	129	1,600	0.081 *		
Eastbound	RT	0.00	41	0	0.000	ICU:	0.449
	TH	2.00	760	3,200	0.250 *		
	LT	0.00	0	0	0.000	LOS:	Α

^{* -} Denotes critical movement

Intersection: 14 - Highland Ave & Huntington Dr

Description: Existing plus Project

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	1.00	31	1,600	0.013	N-S(1):	0.105 *
	TH	2.00	167	3,200	0.041	N-S(2):	0.104
	LT	0.00	62	1,600	0.039 *	E-W(1):	0.379 *
Westbound	RT	1.00	70	1,600	0.024	E-W(2):	0.343
	TH	2.00	1,056	3,200	0.330		
	LT	1.00	442	1,600	0.276 *	V/C:	0.484
Northbound	RT	1.00	327	1,600	0.066 *	Lost Time:	0.100
	TH	2.00	91	3,200	0.060	ITS:	0.000
	LT	0.00	101	1,600	0.063		
Eastbound	RT	1.00	90	1,600	0.025	ICU:	0.584
	TH	2.00	329	3,200	0.103 *		
	LT	1.00	20	1,600	0.013	LOS:	Α

Date/Time:	PM PEAK HOUR
Date/Time:	FINI FEAR DUUK

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	ICU ANALYSIS	
Southbound	RT	1.00	43	1,600	0.022	N-S(1):	0.265 *	
	TH	2.00	149	3,200	0.045	N-S(2):	0.132	
	LT	0.00	94	1,600	0.059 *	E-W(1):	0.528 *	
Westbound	RT	1.00	46	1,600	0.000	E-W(2):	0.161	
	TH	2.00	481	3,200	0.150			
	LT	1.00	256	1,600	0.160 *	V/C:	0.793	
Northbound	RT	1.00	457	1,600	0.206 *	Lost Time:	0.100	
	TH	2.00	149	3,200	0.090	ITS:	0.000	
	LT	0.00	139	1,600	0.087			
Eastbound	RT	1.00	150	1,600	0.050	ICU:	0.893	
	TH	2.00	1,176	3,200	0.368 *			
	LT	1.00	17	1,600	0.011	LOS:	D	

^{* -} Denotes critical movement

Intersection: 15 - Highland Ave & Central Ave

Description: Existing plus Project

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	ICU ANALYSIS	
Southbound	RT	1.00	127	1,600	0.042	N-S(1):	0.113	
	TH	2.00	438	3,200	0.095 *	N-S(2):	0.150 *	
	LT	0.00	44	1,600	0.028	E-W(1):	0.349 *	
Westbound	RT	0.00	49	0	0.000	E-W(2):	0.228	
	TH	1.00	197	1,600	0.154			
	LT	1.00	260	1,600	0.163 *	V/C:	0.499	
Northbound	RT	1.00	163	1,600	0.021	Lost Time:	0.100	
	TH	2.00	296	3,200	0.085	ITS:	0.000	
	LT	0.00	88	1,600	0.055 *			
Eastbound	RT	0.00	171	0	0.000	ICU:	0.599	
	TH	1.00	126	1,600	0.186 *			
	LT	1.00	119	1,600	0.074	LOS:	Α	

Date/Time:	PM PEAK HOUR
Date/Time:	FINI FEAR DUUK

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	ICU ANALYSIS	
Southbound	RT	1.00	164	1,600	0.064	N-S(1):	0.394 *	
	TH	2.00	306	3,200	0.090	N-S(2):	0.153	
	LT	0.00	109	1,600	0.068 *	E-W(1):	0.289 *	
Westbound	RT	0.00	38	0	0.000	E-W(2):	0.164	
	TH	1.00	99	1,600	0.086			
	LT	1.00	64	1,600	0.040 *	V/C:	0.683	
Northbound	RT	1.00	553	1,600	0.326 *	Lost Time:	0.100	
	TH	2.00	532	3,200	0.185	ITS:	0.000	
	LT	0.00	100	1,600	0.063			
Eastbound	RT	0.00	75	0	0.000	ICU:	0.783	
	TH	1.00	323	1,600	0.249 *			
	LT	1.00	124	1,600	0.078	LOS:	С	

^{* -} Denotes critical movement

Intersection: 17 - Highland Ave & Business Center Dr

Description: Existing plus Project

Thru Lane: 1600 vph N-S Split Phase: Ν E-W Split Phase : 1600 vph Υ Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	62	0	0.000	N-S(1):	0.150
	TH	2.00	699	3,200	0.238 *	N-S(2):	0.259 *
	LT	1.00	31	1,600	0.019	E-W(1):	0.080 *
Westbound	RT	0.00	8	0	0.000	E-W(2):	0.000
	TH	1.00	0	1,600	0.005 *		
	LT	1.00	3	1,600	0.002	V/C:	0.339
Northbound	RT	0.00	23	0	0.000	Lost Time:	0.100
	TH	2.00	397	3,200	0.131	ITS:	0.000
	LT	1.00	34	1,600	0.021 *		
Eastbound	RT	0.00	70	0	0.000	ICU:	0.439
	TH	1.00	2	1,600	0.045		
	LT	1.00	120	1,600	0.075 *	LOS:	Α

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	112	0	0.000	N-S(1):	0.281 *
	TH	2.00	318	3,200	0.134	N-S(2):	0.186
	LT	1.00	8	1,600	0.005 *	E-W(1):	0.106 *
Westbound	RT	0.00	26	0	0.000	E-W(2):	0.000
	TH	1.00	1	1,600	0.017 *		
	LT	1.00	23	1,600	0.014	V/C:	0.387
Northbound	RT	0.00	11	0	0.000	Lost Time:	0.100
	TH	2.00	871	3,200	0.276 *	ITS:	0.000
	LT	1.00	83	1,600	0.052		
Eastbound	RT	0.00	70	0	0.000	ICU:	0.487
	TH	1.00	0	1,600	0.044		
	LT	1.00	143	1,600	0.089 *	LOS:	Α

^{* -} Denotes critical movement

Intersection: 18 - I-605/Mt Olive Dr & Huntington Dr

Description: Existing plus Project

Thru Lane: 1600 vph N-S Split Phase: Υ E-W Split Phase : 1600 vph Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	81	0	0.000	N-S(1):	0.432 *
	TH	2.00	337	3,200	0.131 *	N-S(2):	0.000
	LT	1.00	84	1,600	0.053	E-W(1):	0.291
Westbound	RT	1.00	83	1,600	0.026	E-W(2):	0.369 *
	TH	2.00	1,066	3,200	0.333 *		
	LT	1.00	323	1,600	0.202	V/C:	0.801
Northbound	RT	1.00	243	1,600	0.051	Lost Time:	0.100
	TH	0.43	186	687	0.271	ITS:	0.000
	LT	1.57	681	2,262	0.301 *		
Eastbound	RT	1.00	384	1,600	0.089	ICU:	0.901
	TH	2.00	249	3,200	0.078		
	LT	1.00	57	1,600	0.036 *	LOS:	Е

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	45	0	0.000	N-S(1):	0.415 *
	TH	2.00	271	3,200	0.099 *	N-S(2):	0.000
	LT	1.00	77	1,600	0.048	E-W(1):	0.600 *
Westbound	RT	1.00	42	1,600	0.002	E-W(2):	0.206
	TH	2.00	481	3,200	0.150		
	LT	1.00	254	1,600	0.159 *	V/C:	1.015
Northbound	RT	1.00	632	1,600	0.316 *	Lost Time:	0.100
	TH	0.68	180	1,093	0.165	ITS:	0.000
	LT	1.32	347	1,896	0.183		
Eastbound	RT	1.00	852	1,600	0.441 *	ICU:	1.115
	TH	2.00	856	3,200	0.268		
	LT	1.00	89	1,600	0.056	LOS:	F

^{* -} Denotes critical movement

Intersection: 1 - Mountain Ave & Central Ave

Description: Future Base

Thru Lane: 1600 vph N-S Split Phase: Ν E-W Split Phase : 1600 vph Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	184	0	0.000	N-S(1):	0.164
	TH	2.00	598	3,200	0.244 *	N-S(2):	0.372 *
	LT	0.00	0	0	0.000	E-W(1):	0.188
Westbound	RT	0.00	541	0	0.000	E-W(2):	0.371 *
	TH	2.00	646	3,200	0.371 *		
	LT	1.00	300	1,600	0.188	V/C:	0.743
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	2.00	525	3,200	0.164	ITS:	0.000
	LT	1.00	204	1,600	0.128 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.843
	TH	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	LOS:	D

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	283	0	0.000	N-S(1):	0.198
	TH	2.00	898	3,200	0.369 *	N-S(2):	0.552 *
	LT	0.00	0	0	0.000	E-W(1):	0.159
Westbound	RT	0.00	476	1,600	0.298 *	E-W(2):	0.298 *
	TH	2.00	236	1,600	0.148		
	LT	1.00	255	1,600	0.159	V/C:	0.850
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	2.00	633	3,200	0.198	ITS:	0.000
	LT	1.00	292	1,600	0.183 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.950
	TH	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	LOS:	E

^{* -} Denotes critical movement

Intersection: 2 - Mountain Ave & Evergreen Ave

Description: Future Base

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	ICU ANALYSIS	
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.415 *	
	TH	2.00	506	3,200	0.158	N-S(2):	0.158	
	LT	1.00	391	1,600	0.244 *	E-W(1):	0.120	
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.205 *	
	TH	0.00	0	0	0.000 *			
	LT	0.00	0	0	0.000	V/C:	0.620	
Northbound	RT	0.00	134	0	0.000	Lost Time:	0.100	
	TH	2.00	412	3,200	0.171 *	ITS:	0.000	
	LT	0.00	0	0	0.000			
Eastbound	RT	1.00	192	1,600	0.120	ICU:	0.720	
	TH	2.00	327	3,200	0.102			
	LT	1.00	328	1,600	0.205 *	LOS:	С	

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.596 *
	TH	2.00	573	3,200	0.179	N-S(2):	0.179
	LT	1.00	574	1,600	0.359 *	E-W(1):	0.373 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.207
	TH	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	V/C:	0.969
Northbound	RT	0.00	146	0	0.000	Lost Time:	0.100
	TH	2.00	611	3,200	0.237 *	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	1.00	138	1,600	0.086	ICU:	1.069
	TH	2.00	1,194	3,200	0.373 *		
	LT	1.00	331	1,600	0.207	LOS:	F

^{* -} Denotes critical movement

Intersection: 3 - Mountain Ave & Duarte Rd

Description: **Future Base**

RR Crossing Movements

Thru Lane: 1600 vph 1067 vph N-S Split Phase: Ν 1067 vph 1600 vph E-W Split Phase: Ν Left Lane: 10

Double Lt Penalty: 10 %

ITS: 0 % Lost Time (% of cycle): V/C Round Off (decs.):

3

OLA Movements: SBR, WBR

FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	167	1,067	0.000	N-S(1):	0.251 *
	TH	1.00	169	1,067	0.158	N-S(2):	0.179
	LT	1.00	80	1,067	0.075 *	E-W(1):	0.115
Westbound	RT	1.00	190	1,067	0.103 *	E-W(2):	0.269 *
	TH	2.00	170	3,200	0.053		
	LT	1.00	54	1,600	0.034	V/C:	0.520
Northbound	RT	1.00	139	1,600	0.087	Lost Time:	0.100
	TH	1.00	188	1,067	0.176 *	ITS:	0.000
	LT	1.00	34	1,600	0.021		
Eastbound	RT	0.00	24	0	0.000	ICU:	0.620
	TH	2.00	236	3,200	0.081		
	LT	1.00	177	1,067	0.166 *	LOS:	В

Date/Time:	PM PEAK HOUR
Date/Time:	PIW PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	230	1,067	0.000	N-S(1):	0.273
	TH	1.00	295	1,067	0.276 *	N-S(2):	0.290 *
	LT	1.00	139	1,067	0.130	E-W(1):	0.217
Westbound	RT	1.00	237	1,067	0.092 *	E-W(2):	0.320 *
	TH	2.00	219	3,200	0.068		
	LT	1.00	46	1,600	0.029	V/C:	0.610
Northbound	RT	1.00	119	1,600	0.074	Lost Time:	0.100
	TH	1.00	153	1,067	0.143	ITS:	0.000
	LT	1.00	23	1,600	0.014 *		
Eastbound	RT	0.00	101	0	0.000	ICU:	0.710
	TH	2.00	502	3,200	0.188		
	LT	1.00	243	1,067	0.228 *	LOS:	С

^{* -} Denotes critical movement

Intersection: 4 - Buena Vista St & Huntington Dr

Description: Future Base

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	ICU ANALYSIS	
7.1.1.137.011		2, 120	, o Loivie	57.11.7.101111	.,,	1.307.117.		
Southbound	RT	0.00	65	0	0.000	N-S(1):	0.152	
	TH	2.00	261	3,200	0.102 *	N-S(2):	0.208 *	
	LT	1.00	63	1,600	0.039	E-W(1):	0.125	
Westbound	RT	1.00	125	1,600	0.058	E-W(2):	0.432 *	
	TH	2.00	1,258	3,200	0.393 *			
	LT	1.00	84	1,600	0.053	V/C:	0.640	
Northbound	RT	0.00	87	0	0.000	Lost Time:	0.100	
	TH	2.00	274	3,200	0.113	ITS:	0.000	
	LT	1.00	170	1,600	0.106 *			
Eastbound	RT	1.00	113	1,600	0.018	ICU:	0.740	
	TH	2.00	230	3,200	0.072			
	LT	1.00	62	1,600	0.039 *	LOS:	С	

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	122	0	0.000	N-S(1):	0.286
	TH	2.00	298	3,200	0.131 *	N-S(2):	0.304 *
	LT	1.00	190	1,600	0.119	E-W(1):	0.480 *
Westbound	RT	1.00	77	1,600	0.000	E-W(2):	0.293
	TH	2.00	674	3,200	0.211		
	LT	1.00	187	1,600	0.117 *	V/C:	0.784
Northbound	RT	0.00	206	0	0.000	Lost Time:	0.100
	TH	2.00	327	3,200	0.167	ITS:	0.000
	LT	1.00	276	1,600	0.173 *		
Eastbound	RT	1.00	196	1,600	0.036	ICU:	0.884
	TH	2.00	1,160	3,200	0.363 *		
	LT	1.00	131	1,600	0.082	LOS:	D

^{* -} Denotes critical movement

Intersection: 5 - Buena Vista St & Central Ave

Description: Future Base

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	ICU ANALYSIS	
Southbound	RT	0.00	14	0	0.000	N-S(1):	0.229 *	
	TH	2.00	494	3,200	0.159	N-S(2):	0.194	
	LT	1.00	40	1,600	0.025 *	E-W(1):	0.299 *	
Westbound	RT	1.00	291	1,600	0.169	E-W(2):	0.170	
	TH	1.00	165	1,600	0.103			
	LT	1.00	433	1,600	0.271 *	V/C:	0.528	
Northbound	RT	0.00	296	0	0.000	Lost Time:	0.100	
	TH	2.00	356	3,200	0.204 *	ITS:	0.000	
	LT	1.00	56	1,600	0.035			
Eastbound	RT	0.00	33	0	0.000	ICU:	0.628	
	TH	1.00	12	1,600	0.028 *			
	LT	1.00	1	1,600	0.001	LOS:	В	

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	21	0	0.000	N-S(1):	0.267 *
	TH	2.00	656	3,200	0.212	N-S(2):	0.246
	LT	1.00	93	1,600	0.058 *	E-W(1):	0.302 *
Westbound	RT	1.00	389	1,600	0.214	E-W(2):	0.219
	TH	1.00	185	1,600	0.116		
	LT	1.00	201	1,600	0.126 *	V/C:	0.569
Northbound	RT	0.00	225	0	0.000	Lost Time:	0.100
	TH	2.00	444	3,200	0.209 *	ITS:	0.000
	LT	1.00	54	1,600	0.034		
Eastbound	RT	0.00	173	0	0.000	ICU:	0.669
	TH	1.00	108	1,600	0.176 *		
	LT	1.00	8	1,600	0.005	LOS:	В

^{* -} Denotes critical movement

Intersection: 6 - Buena Vista St & I-210 WB On-ramp

Description: **Future Base**

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 V/C Round Off (decs.): 3

ITS: 0 %

OLA Movements: FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	196	0	0.000	N-S(1):	0.222
	TH	2.00	763	3,200	0.300 *	N-S(2):	0.359 *
	LT	0.00	0	0	0.000	E-W(1):	0.000 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.000 *
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000 *	V/C:	0.359
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	2.00	710	3,200	0.222	ITS:	0.000
	LT	1.00	94	1,600	0.059 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.459
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000 *	LOS:	Α

Data/Times	DM DEAK HOUD
Date/Time:	PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	376	0	0.000	N-S(1):	0.236
	TH	2.00	640	3,200	0.318 *	N-S(2):	0.526 *
	LT	0.00	0	0	0.000	E-W(1):	0.000 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.000 *
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000 *	V/C:	0.526
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	2.00	755	3,200	0.236	ITS:	0.000
	LT	1.00	332	1,600	0.208 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.626
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000 *	LOS:	В

^{* -} Denotes critical movement

Intersection: 7 - Buena Vista St & Evergreen St/I-210 EB On-ramp

Description: Future Base

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.284 *
	TH	2.00	505	3,200	0.158	N-S(2):	0.158
	LT	1.00	239	1,600	0.149 *	E-W(1):	0.272 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.256
	TH	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	V/C:	0.556
Northbound	RT	1.00	216	1,600	0.135 *	Lost Time:	0.100
	TH	2.00	400	3,200	0.125	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	0.00	435	1,600	0.272 *	ICU:	0.656
	TH	2.00	3	1,600	0.258		
	LT	0.00	410	1,600	0.256	LOS:	В

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.345 *
	TH	2.00	429	3,200	0.134	N-S(2):	0.134
	LT	1.00	203	1,600	0.127 *	E-W(1):	0.216
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.245 *
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000	V/C:	0.590
Northbound	RT	1.00	339	1,600	0.212	Lost Time:	0.100
	TH	2.00	696	3,200	0.218 *	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	0.00	121	0	0.000	ICU:	0.690
	TH	2.00	224	1,600	0.216		
	LT	0.00	392	1,600	0.245 *	LOS:	В

^{* -} Denotes critical movement

Intersection: 9 - Buena Vista St & Duarte Rd

Description: **Future Base**

RR Crossing Movements

1600 vph 1067 vph N-S Split Phase: Thru Lane: Υ 1067 vph E-W Split Phase : 1600 vph Ν Left Lane:

Double Lt Penalty: 10 %

ITS: 0 % Lost Time (% of cycle): 10 V/C Round Off (decs.):

3

OLA Movements: FF Movements:

Date/Time: **AM PEAK HOUR**

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	118	0	0.000	N-S(1):	0.641 *
	TH	2.00	305	1,067	0.396	N-S(2):	0.000
	LT	0.00	504	1,067	0.472 *	E-W(1):	0.189
Westbound	RT	1.00	175	1,067	0.000	E-W(2):	0.281 *
	TH	2.00	176	3,200	0.055 *		
	LT	1.00	122	1,600	0.076	V/C:	0.922
Northbound	RT	0.00	168	0	0.000	Lost Time:	0.100
	TH	2.00	193	2,134	0.169 *	ITS:	0.000
	LT	1.00	45	1,600	0.028		
Eastbound	RT	1.00	42	1,600	0.012	ICU:	1.022
	TH	2.00	361	3,200	0.113		
	LT	1.00	241	1,067	0.226 *	LOS:	F

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	146	0	0.000	N-S(1):	0.464 *
	TH	2.00	302	1,067	0.269 *	N-S(2):	0.000
	LT	0.00	127	1,067	0.119	E-W(1):	0.257
Westbound	RT	1.00	491	1,067	0.401 *	E-W(2):	0.611 *
	TH	2.00	288	3,200	0.090		
	LT	1.00	190	1,600	0.119	V/C:	1.075
Northbound	RT	0.00	92	0	0.000	Lost Time:	0.100
	TH	2.00	324	2,134	0.195 *	ITS:	0.000
	LT	1.00	93	1,600	0.058		
Eastbound	RT	1.00	110	1,600	0.040	ICU:	1.175
	TH	2.00	441	3,200	0.138		
	LT	1.00	224	1,067	0.210 *	LOS:	F

^{* -} Denotes critical movement

Intersection: 13 - Hope Dr & Duarte Rd

Description: Future Base

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.000
	TH	0.00	0	0	0.000 *	N-S(2):	0.055 *
	LT	0.00	0	0	0.000	E-W(1):	0.242 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.148
	TH	2.00	475	3,200	0.148		
	LT	1.00	60	1,600	0.038 *	V/C:	0.297
Northbound	RT	1.00	20	1,600	0.000	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	88	1,600	0.055 *		
Eastbound	RT	0.00	213	0	0.000	ICU:	0.397
	TH	2.00	441	3,200	0.204 *		
	LT	0.00	0	0	0.000	LOS:	Α

Data/Tima:	PM PEAK HOUR
Date/Time:	PINI PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.032
	TH	0.00	0	0	0.000 *	N-S(2):	0.133 *
	LT	0.00	0	0	0.000	E-W(1):	0.257 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.109
	TH	2.00	350	3,200	0.109		
	LT	1.00	31	1,600	0.019 *	V/C:	0.390
Northbound	RT	1.00	66	1,600	0.032	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	212	1,600	0.133 *		
Eastbound	RT	0.00	56	0	0.000	ICU:	0.490
	TH	2.00	707	3,200	0.238 *		
	LT	0.00	0	0	0.000	LOS:	Α

^{* -} Denotes critical movement

Intersection: 14 - Highland Ave & Huntington Dr

Description: Future Base

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	ICU ANALYSIS	
Southbound	RT	1.00	32	1,600	0.013	N-S(1):	0.093	
	TH	2.00	171	3,200	0.042 *	N-S(2):	0.096 *	
	LT	0.00	64	1,600	0.040	E-W(1):	0.416 *	
Westbound	RT	1.00	72	1,600	0.025	E-W(2):	0.378	
	TH	2.00	1,167	3,200	0.365			
	LT	1.00	467	1,600	0.292 *	V/C:	0.512	
Northbound	RT	1.00	246	1,600	0.008	Lost Time:	0.100	
	TH	2.00	84	3,200	0.053	ITS:	0.000	
	LT	0.00	87	1,600	0.054 *			
Eastbound	RT	1.00	87	1,600	0.027	ICU:	0.612	
	TH	2.00	397	3,200	0.124 *			
	LT	1.00	21	1,600	0.013	LOS:	В	

Data/Times	DM DEAK HOUD
Date/Time:	PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	44	1,600	0.022	N-S(1):	0.286 *
	TH	2.00	142	3,200	0.044	N-S(2):	0.127
	LT	0.00	97	1,600	0.061 *	E-W(1):	0.515 *
Westbound	RT	1.00	47	1,600	0.000	E-W(2):	0.208
	TH	2.00	629	3,200	0.197		
	LT	1.00	167	1,600	0.104 *	V/C:	0.801
Northbound	RT	1.00	444	1,600	0.225 *	Lost Time:	0.100
	TH	2.00	149	3,200	0.088	ITS:	0.000
	LT	0.00	132	1,600	0.083		
Eastbound	RT	1.00	136	1,600	0.044	ICU:	0.901
	TH	2.00	1,316	3,200	0.411 *		
	LT	1.00	18	1,600	0.011	LOS:	Е

^{* -} Denotes critical movement

Intersection: 15 - Highland Ave & Central Ave

Description: **Future Base**

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 0 % V/C Round Off (decs.): 3

ITS:

OLA Movements: FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	131	1,600	0.043	N-S(1):	0.091
	TH	2.00	457	3,200	0.099 *	N-S(2):	0.133 *
	LT	0.00	45	1,600	0.028	E-W(1):	0.365 *
Westbound	RT	0.00	51	0	0.000	E-W(2):	0.236
	TH	1.00	203	1,600	0.159		
	LT	1.00	271	1,600	0.169 *	V/C:	0.498
Northbound	RT	1.00	166	1,600	0.019	Lost Time:	0.100
	TH	2.00	186	3,200	0.063	ITS:	0.000
	LT	0.00	54	1,600	0.034 *		
Eastbound	RT	0.00	184	0	0.000	ICU:	0.598
	TH	1.00	130	1,600	0.196 *		
	LT	1.00	123	1,600	0.077	LOS:	Α

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	169	1,600	0.066	N-S(1):	0.408 *
	TH	2.00	190	3,200	0.074	N-S(2):	0.122
	LT	0.00	112	1,600	0.070 *	E-W(1):	0.281 *
Westbound	RT	0.00	39	0	0.000	E-W(2):	0.168
	TH	1.00	102	1,600	0.088		
	LT	1.00	64	1,600	0.040 *	V/C:	0.689
Northbound	RT	1.00	573	1,600	0.338 *	Lost Time:	0.100
	TH	2.00	504	3,200	0.180	ITS:	0.000
	LT	0.00	77	1,600	0.048		
Eastbound	RT	0.00	53	0	0.000	ICU:	0.789
	TH	1.00	333	1,600	0.241 *		
	LT	1.00	128	1,600	0.080	LOS:	С

^{* -} Denotes critical movement

Intersection: 17 - Highland Ave & Business Center Dr

Description: Future Base

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Υ Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	24	0	0.000	N-S(1):	0.137
	TH	2.00	780	3,200	0.251 *	N-S(2):	0.256 *
	LT	1.00	32	1,600	0.020	E-W(1):	0.019 *
Westbound	RT	0.00	8	0	0.000	E-W(2):	0.000
	TH	1.00	0	1,600	0.005 *		
	LT	1.00	3	1,600	0.002	V/C:	0.275
Northbound	RT	0.00	24	0	0.000	Lost Time:	0.100
	TH	2.00	350	3,200	0.117	ITS:	0.000
	LT	1.00	8	1,600	0.005 *		
Eastbound	RT	0.00	5	0	0.000	ICU:	0.375
	TH	1.00	2	1,600	0.004		
	LT	1.00	22	1,600	0.014 *	LOS:	Α

Data/Times	PM PEAK HOUR
Date/Time:	FINI FEAN HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	15	0	0.000	N-S(1):	0.295 *
	TH	2.00	268	3,200	0.088	N-S(2):	0.100
	LT	1.00	8	1,600	0.005 *	E-W(1):	0.063 *
Westbound	RT	0.00	27	0	0.000	E-W(2):	0.000
	TH	1.00	1	1,600	0.018 *		
	LT	1.00	24	1,600	0.015	V/C:	0.358
Northbound	RT	0.00	11	0	0.000	Lost Time:	0.100
	TH	2.00	916	3,200	0.290 *	ITS:	0.000
	LT	1.00	19	1,600	0.012		
Eastbound	RT	0.00	23	0	0.000	ICU:	0.458
	TH	1.00	0	1,600	0.014		
	LT	1.00	72	1,600	0.045 *	LOS:	Α

^{* -} Denotes critical movement

Intersection: 18 - I-605/Mt Olive Dr & Huntington Dr

Description: Future Base

Thru Lane: 1600 vph N-S Split Phase: Υ 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	84	0	0.000	N-S(1):	0.467 *
	TH	2.00	348	3,200	0.135 *	N-S(2):	0.000
	LT	1.00	87	1,600	0.054	E-W(1):	0.290
Westbound	RT	1.00	86	1,600	0.027	E-W(2):	0.390 *
	TH	2.00	1,128	3,200	0.353 *		
	LT	1.00	333	1,600	0.208	V/C:	0.857
Northbound	RT	1.00	251	1,600	0.053	Lost Time:	0.100
	TH	0.40	193	645	0.299	ITS:	0.000
	LT	1.60	764	2,299	0.332 *		
Eastbound	RT	1.00	359	1,600	0.058	ICU:	0.957
	TH	2.00	261	3,200	0.082		
	LT	1.00	59	1,600	0.037 *	LOS:	Е

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	46	0	0.000	N-S(1):	0.428 *
	TH	2.00	281	3,200	0.102 *	N-S(2):	0.000
	LT	1.00	79	1,600	0.049	E-W(1):	0.643 *
Westbound	RT	1.00	43	1,600	0.002	E-W(2):	0.222
	TH	2.00	524	3,200	0.164		
	LT	1.00	262	1,600	0.164 *	V/C:	1.071
Northbound	RT	1.00	652	1,600	0.326 *	Lost Time:	0.100
	TH	0.68	187	1,080	0.173	ITS:	0.000
	LT	1.32	367	1,908	0.192		
Eastbound	RT	1.00	920	1,600	0.479 *	ICU:	1.171
	TH	2.00	917	3,200	0.287		
	LT	1.00	92	1,600	0.058	LOS:	F

^{* -} Denotes critical movement

Intersection: 1 - Mountain Ave & Central Ave

Description: Future plus Project

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	184	0	0.000	N-S(1):	0.168
	TH	2.00	603	3,200	0.246 *	N-S(2):	0.374 *
	LT	0.00	0	0	0.000	E-W(1):	0.188
Westbound	RT	0.00	541	0	0.000	E-W(2):	0.371 *
	TH	2.00	646	3,200	0.371 *		
	LT	1.00	300	1,600	0.188	V/C:	0.745
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	2.00	539	3,200	0.168	ITS:	0.000
	LT	1.00	204	1,600	0.128 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.845
	TH	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	LOS:	D

Date/Time: PM PEAK	HOUR	

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	283	0	0.000	N-S(1):	0.201
	TH	2.00	913	3,200	0.374 *	N-S(2):	0.557 *
	LT	0.00	0	0	0.000	E-W(1):	0.159
Westbound	RT	0.00	476	1,600	0.298 *	E-W(2):	0.298 *
	TH	2.00	236	1,600	0.148		
	LT	1.00	255	1,600	0.159	V/C:	0.855
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	2.00	643	3,200	0.201	ITS:	0.000
	LT	1.00	292	1,600	0.183 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.955
	TH	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	LOS:	E

^{* -} Denotes critical movement

Intersection: 2 - Mountain Ave & Evergreen Ave

Description: Future plus Project

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.419 *
	TH	2.00	511	3,200	0.160	N-S(2):	0.160
	LT	1.00	391	1,600	0.244 *	E-W(1):	0.120
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.205 *
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000	V/C:	0.624
Northbound	RT	0.00	134	0	0.000	Lost Time:	0.100
	TH	2.00	426	3,200	0.175 *	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	1.00	192	1,600	0.120	ICU:	0.724
	TH	2.00	333	3,200	0.104		
	LT	1.00	328	1,600	0.205 *	LOS:	С

Data/Tima:	PM PEAK HOUR
Date/Time:	PINI PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.599 *
	TH	2.00	588	3,200	0.184	N-S(2):	0.184
	LT	1.00	574	1,600	0.359 *	E-W(1):	0.379 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.207
	TH	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	V/C:	0.978
Northbound	RT	0.00	146	0	0.000	Lost Time:	0.100
	TH	2.00	621	3,200	0.240 *	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	1.00	138	1,600	0.086	ICU:	1.078
	TH	2.00	1,212	3,200	0.379 *		
	LT	1.00	331	1,600	0.207	LOS:	F

^{* -} Denotes critical movement

Intersection: 3 - Mountain Ave & Duarte Rd

Description: **Future plus Project**

RR Crossing Movements

1600 vph 1067 vph N-S Split Phase: Thru Lane: Ν 1067 vph 1600 vph E-W Split Phase: Left Lane: Ν 10

Double Lt Penalty: 10 %

ITS: 0 % Lost Time (% of cycle):

V/C Round Off (decs.): 3

OLA Movements: SBR, WBR

FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	1.00	167	1,067	0.000	N-S(1):	0.256 *
	TH	1.00	169	1,067	0.158	N-S(2):	0.179
	LT	1.00	85	1,067	0.080 *	E-W(1):	0.119
Westbound	RT	1.00	204	1,067	0.112 *	E-W(2):	0.278 *
	TH	2.00	184	3,200	0.058		
	LT	1.00	57	1,600	0.036	V/C:	0.534
Northbound	RT	1.00	140	1,600	0.088	Lost Time:	0.100
	TH	1.00	188	1,067	0.176 *	ITS:	0.000
	LT	1.00	34	1,600	0.021		
Eastbound	RT	0.00	24	0	0.000	ICU:	0.634
	TH	2.00	241	3,200	0.083		
	LT	1.00	177	1,067	0.166 *	LOS:	В

Date/Time:	PM PEAK HOUR
Date/Time:	PIW PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	230	1,067	0.000	N-S(1):	0.287
	TH	1.00	295	1,067	0.276 *	N-S(2):	0.290 *
	LT	1.00	154	1,067	0.144	E-W(1):	0.223
Westbound	RT	1.00	247	1,067	0.087 *	E-W(2):	0.315 *
	TH	2.00	229	3,200	0.072		
	LT	1.00	48	1,600	0.030	V/C:	0.605
Northbound	RT	1.00	122	1,600	0.076	Lost Time:	0.100
	TH	1.00	153	1,067	0.143	ITS:	0.000
	LT	1.00	23	1,600	0.014 *		
Eastbound	RT	0.00	101	0	0.000	ICU:	0.705
	TH	2.00	517	3,200	0.193		
	LT	1.00	243	1,067	0.228 *	LOS:	С

^{* -} Denotes critical movement

Intersection: 4 - Buena Vista St & Huntington Dr

Description: Future plus Project

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	65	0	0.000	N-S(1):	0.153
	TH	2.00	261	3,200	0.102 *	N-S(2):	0.208 *
	LT	1.00	64	1,600	0.040	E-W(1):	0.126
Westbound	RT	1.00	128	1,600	0.060	E-W(2):	0.437 *
	TH	2.00	1,272	3,200	0.398 *		
	LT	1.00	84	1,600	0.053	V/C:	0.645
Northbound	RT	0.00	87	0	0.000	Lost Time:	0.100
	TH	2.00	274	3,200	0.113	ITS:	0.000
	LT	1.00	170	1,600	0.106 *		
Eastbound	RT	1.00	113	1,600	0.018	ICU:	0.745
	TH	2.00	235	3,200	0.073		
	LT	1.00	62	1,600	0.039 *	LOS:	С

ADDDOACH	NA) /NAT	LANIEC	VOLUME	CADACITY	V/C	ICII ANA	I VCIC
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	122	0	0.000	N-S(1):	0.288
	TH	2.00	298	3,200	0.131 *	N-S(2):	0.304 *
	LT	1.00	193	1,600	0.121	E-W(1):	0.484 *
Westbound	RT	1.00	79	1,600	0.000	E-W(2):	0.296
	TH	2.00	684	3,200	0.214		
	LT	1.00	187	1,600	0.117 *	V/C:	0.788
Northbound	RT	0.00	206	0	0.000	Lost Time:	0.100
	TH	2.00	327	3,200	0.167	ITS:	0.000
	LT	1.00	276	1,600	0.173 *		
Eastbound	RT	1.00	196	1,600	0.036	ICU:	0.888
	TH	2.00	1,175	3,200	0.367 *		
	LT	1.00	131	1,600	0.082	LOS:	D

^{* -} Denotes critical movement

Intersection: 5 - Buena Vista St & Central Ave

Description: Future plus Project

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	14	0	0.000	N-S(1):	0.229 *
	TH	2.00	494	3,200	0.159	N-S(2):	0.194
	LT	1.00	40	1,600	0.025 *	E-W(1):	0.321 *
Westbound	RT	1.00	291	1,600	0.169	E-W(2):	0.170
	TH	1.00	165	1,600	0.103		
	LT	1.00	469	1,600	0.293 *	V/C:	0.550
Northbound	RT	0.00	296	0	0.000	Lost Time:	0.100
	TH	2.00	356	3,200	0.204 *	ITS:	0.000
	LT	1.00	56	1,600	0.035		
Eastbound	RT	0.00	33	0	0.000	ICU:	0.650
	TH	1.00	12	1,600	0.028 *		
	LT	1.00	1	1,600	0.001	LOS:	В

Data/Times	DM DEAK HOUD
Date/Time:	PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	21	0	0.000	N-S(1):	0.267 *
	TH	2.00	656	3,200	0.212	N-S(2):	0.246
	LT	1.00	93	1,600	0.058 *	E-W(1):	0.317 *
Westbound	RT	1.00	389	1,600	0.214	E-W(2):	0.219
	TH	1.00	185	1,600	0.116		
	LT	1.00	226	1,600	0.141 *	V/C:	0.584
Northbound	RT	0.00	225	0	0.000	Lost Time:	0.100
	TH	2.00	444	3,200	0.209 *	ITS:	0.000
	LT	1.00	54	1,600	0.034		
Eastbound	RT	0.00	173	0	0.000	ICU:	0.684
	TH	1.00	108	1,600	0.176 *		
	LT	1.00	8	1,600	0.005	LOS:	В

^{* -} Denotes critical movement

Intersection: 6 - Buena Vista St & I-210 WB On-ramp

Description: Future plus Project

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	232	0	0.000	N-S(1):	0.222
	TH	2.00	763	3,200	0.311 *	N-S(2):	0.380 *
	LT	0.00	0	0	0.000	E-W(1):	0.000 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.000 *
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000 *	V/C:	0.380
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	2.00	710	3,200	0.222	ITS:	0.000
	LT	1.00	111	1,600	0.069 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.480
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000 *	LOS:	Α

Date/Time: PM PEAK	HOUR	

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	401	0	0.000	N-S(1):	0.236
	TH	2.00	640	3,200	0.325 *	N-S(2):	0.539 *
	LT	0.00	0	0	0.000	E-W(1):	0.000 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.000 *
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000 *	V/C:	0.539
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	2.00	755	3,200	0.236	ITS:	0.000
	LT	1.00	343	1,600	0.214 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.639
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000 *	LOS:	В

^{* -} Denotes critical movement

Intersection: 7 - Buena Vista St & Evergreen St/I-210 EB On-ramp

Description: Future plus Project

Thru Lane: 1600 vph N-S Split Phase: Ν E-W Split Phase : 1600 vph Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.310 *
	TH	2.00	505	3,200	0.158	N-S(2):	0.158
	LT	1.00	239	1,600	0.149 *	E-W(1):	0.279 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.256
	TH	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	V/C:	0.589
Northbound	RT	1.00	258	1,600	0.161 *	Lost Time:	0.100
	TH	2.00	417	3,200	0.130	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	0.00	447	1,600	0.279 *	ICU:	0.689
	TH	2.00	3	1,600	0.258		
	LT	0.00	410	1,600	0.256	LOS:	В

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.357 *
	TH	2.00	429	3,200	0.134	N-S(2):	0.134
	LT	1.00	203	1,600	0.127 *	E-W(1):	0.239
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.245 *
	TH	0.00	0	0	0.000 *		
	LT	0.00	0	0	0.000	V/C:	0.602
Northbound	RT	1.00	368	1,600	0.230 *	Lost Time:	0.100
	TH	2.00	707	3,200	0.221	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	0.00	159	0	0.000	ICU:	0.702
	TH	2.00	224	1,600	0.239		
	LT	0.00	392	1,600	0.245 *	LOS:	С

^{* -} Denotes critical movement

Intersection: 9 - Buena Vista St & Duarte Rd

Future plus Project Description:

RR Crossing Movements

1600 vph 1067 vph N-S Split Phase: Thru Lane: Υ 1067 vph E-W Split Phase : 1600 vph Ν Left Lane: 10

Double Lt Penalty: 10 %

ITS: 0 % Lost Time (% of cycle): V/C Round Off (decs.):

3

OLA Movements: FF Movements:

Date/Time: **AM PEAK HOUR**

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	118	0	0.000	N-S(1):	0.661 *
	TH	2.00	308	1,067	0.399	N-S(2):	0.000
	LT	0.00	522	1,067	0.489 *	E-W(1):	0.201
Westbound	RT	1.00	234	1,067	0.000	E-W(2):	0.291 *
	TH	2.00	207	3,200	0.065 *		
	LT	1.00	136	1,600	0.085	V/C:	0.952
Northbound	RT	0.00	173	0	0.000	Lost Time:	0.100
	TH	2.00	194	2,134	0.172 *	ITS:	0.000
	LT	1.00	45	1,600	0.028		
Eastbound	RT	1.00	42	1,600	0.012	ICU:	1.052
	TH	2.00	371	3,200	0.116		
	LT	1.00	241	1,067	0.226 *	LOS:	F

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	146	0	0.000	N-S(1):	0.500 *
	TH	2.00	304	1,067	0.297 *	N-S(2):	0.000
	LT	0.00	183	1,067	0.172	E-W(1):	0.273
Westbound	RT	1.00	531	1,067	0.412 *	E-W(2):	0.622 *
	TH	2.00	309	3,200	0.097		
	LT	1.00	200	1,600	0.125	V/C:	1.122
Northbound	RT	0.00	107	0	0.000	Lost Time:	0.100
	TH	2.00	327	2,134	0.203 *	ITS:	0.000
	LT	1.00	93	1,600	0.058		
Eastbound	RT	1.00	110	1,600	0.040	ICU:	1.222
	TH	2.00	474	3,200	0.148		
	LT	1.00	224	1,067	0.210 *	LOS:	F

^{* -} Denotes critical movement

13 - Hope Dr & Duarte Rd Intersection:

Description: **Future plus Project**

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 V/C Round Off (decs.): 3

ITS: 0 %

OLA Movements: FF Movements:

Date/Time: **AM PEAK HOUR**

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
					_		
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.000
	TH	0.00	0	0	0.000 *	N-S(2):	0.055 *
	LT	0.00	0	0	0.000	E-W(1):	0.254 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.181
	TH	2.00	579	3,200	0.181		
	LT	1.00	63	1,600	0.039 *	V/C:	0.309
Northbound	RT	1.00	21	1,600	0.000	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	88	1,600	0.055 *		
Eastbound	RT	0.00	213	0	0.000	ICU:	0.409
	TH	2.00	474	3,200	0.215 *		
	LT	0.00	0	0	0.000	LOS:	Α
i							

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.033
	TH	0.00	0	0	0.000 *	N-S(2):	0.133 *
	LT	0.00	0	0	0.000	E-W(1):	0.292 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.131
	TH	2.00	420	3,200	0.131		
	LT	1.00	33	1,600	0.021 *	V/C:	0.425
Northbound	RT	1.00	69	1,600	0.033	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	212	1,600	0.133 *		
Eastbound	RT	0.00	56	0	0.000	ICU:	0.525
	TH	2.00	811	3,200	0.271 *		
	LT	0.00	0	0	0.000	LOS:	Α

^{* -} Denotes critical movement

Intersection: 14 - Highland Ave & Huntington Dr

Description: Future plus Project

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	32	1,600	0.013	N-S(1):	0.102
	TH	2.00	175	3,200	0.042 *	N-S(2):	0.107 *
	LT	0.00	64	1,600	0.040	E-W(1):	0.436 *
Westbound	RT	1.00	72	1,600	0.025	E-W(2):	0.378
	TH	2.00	1,167	3,200	0.365		
	LT	1.00	499	1,600	0.312 *	V/C:	0.543
Northbound	RT	1.00	341	1,600	0.057	Lost Time:	0.100
	TH	2.00	95	3,200	0.062	ITS:	0.000
	LT	0.00	104	1,600	0.065 *		
Eastbound	RT	1.00	93	1,600	0.026	ICU:	0.643
	TH	2.00	397	3,200	0.124 *		
	LT	1.00	21	1,600	0.013	LOS:	В

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	44	1,600	0.022	N-S(1):	0.295 *
	TH	2.00	154	3,200	0.046	N-S(2):	0.135
	LT	0.00	97	1,600	0.061 *	E-W(1):	0.579 *
Westbound	RT	1.00	47	1,600	0.000	E-W(2):	0.208
	TH	2.00	629	3,200	0.197		
	LT	1.00	268	1,600	0.168 *	V/C:	0.874
Northbound	RT	1.00	509	1,600	0.234 *	Lost Time:	0.100
	TH	2.00	157	3,200	0.094	ITS:	0.000
	LT	0.00	143	1,600	0.089		
Eastbound	RT	1.00	154	1,600	0.052	ICU:	0.974
	TH	2.00	1,316	3,200	0.411 *		
	LT	1.00	18	1,600	0.011	LOS:	E

^{* -} Denotes critical movement

Intersection: 15 - Highland Ave & Central Ave

Description: Future plus Project

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	I YSIS
7(111(07(011	101 0 101 1	L/ (11LO	VOLOIVIE	0711710111	V/ C	T 100 7 11 17 1	21010
Southbound	RT	1.00	131	1,600	0.043	N-S(1):	0.117
	TH	2.00	498	3,200	0.105 *	N-S(2):	0.161 *
	LT	0.00	45	1,600	0.028	E-W(1):	0.371 *
Westbound	RT	0.00	51	0	0.000	E-W(2):	0.236
	TH	1.00	203	1,600	0.159	, ,	
	LT	1.00	272	1,600	0.170 *	V/C:	0.532
Northbound	RT	1.00	169	1,600	0.021	Lost Time:	0.100
	TH	2.00	309	3,200	0.089	ITS:	0.000
	LT	0.00	90	1,600	0.056 *		
Eastbound	RT	0.00	192	0	0.000	ICU:	0.632
	TH	1.00	130	1,600	0.201 *		
	LT	1.00	123	1,600	0.077	LOS:	В

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	169	1,600	0.066	N-S(1):	0.408 *
	TH	2.00	320	3,200	0.094	N-S(2):	0.158
	LT	0.00	112	1,600	0.070 *	E-W(1):	0.300 *
Westbound	RT	0.00	39	0	0.000	E-W(2):	0.168
	TH	1.00	102	1,600	0.088		
	LT	1.00	67	1,600	0.042 *	V/C:	0.708
Northbound	RT	1.00	575	1,600	0.338 *	Lost Time:	0.100
	TH	2.00	588	3,200	0.198	ITS:	0.000
	LT	0.00	102	1,600	0.064		
Eastbound	RT	0.00	80	0	0.000	ICU:	0.808
	TH	1.00	333	1,600	0.258 *		
	LT	1.00	128	1,600	0.080	LOS:	D

^{* -} Denotes critical movement

Intersection: 17 - Highland Ave & Business Center Dr

Description: Future plus Project

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Υ Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	63	0	0.000	N-S(1):	0.158
	TH	2.00	788	3,200	0.266 *	N-S(2):	0.287 *
	LT	1.00	32	1,600	0.020	E-W(1):	0.081 *
Westbound	RT	0.00	8	0	0.000	E-W(2):	0.000
	TH	1.00	0	1,600	0.005 *		
	LT	1.00	3	1,600	0.002	V/C:	0.368
Northbound	RT	0.00	24	0	0.000	Lost Time:	0.100
	TH	2.00	416	3,200	0.138	ITS:	0.000
	LT	1.00	34	1,600	0.021 *		
Eastbound	RT	0.00	70	0	0.000	ICU:	0.468
	TH	1.00	2	1,600	0.045		
	LT	1.00	121	1,600	0.076 *	LOS:	Α
				•			

Data/Times	DM DEAK HOUD
Date/Time:	PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	112	0	0.000	N-S(1):	0.303 *
	TH	2.00	337	3,200	0.140	N-S(2):	0.193
	LT	1.00	8	1,600	0.005 *	E-W(1):	0.109 *
Westbound	RT	0.00	27	0	0.000	E-W(2):	0.000
	TH	1.00	1	1,600	0.018 *		
	LT	1.00	24	1,600	0.015	V/C:	0.412
Northbound	RT	0.00	11	0	0.000	Lost Time:	0.100
	TH	2.00	944	3,200	0.298 *	ITS:	0.000
	LT	1.00	84	1,600	0.053		
Eastbound	RT	0.00	71	0	0.000	ICU:	0.512
	TH	1.00	0	1,600	0.044		
	LT	1.00	145	1,600	0.091 *	LOS:	Α

^{* -} Denotes critical movement

Intersection: 18 - I-605/Mt Olive Dr & Huntington Dr

Description: Future plus Project

Thru Lane: 1600 vph N-S Split Phase: Υ 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	84	0	0.000	N-S(1):	0.477 *
	TH	2.00	348	3,200	0.135 *	N-S(2):	0.000
	LT	1.00	87	1,600	0.054	E-W(1):	0.312
Westbound	RT	1.00	86	1,600	0.027	E-W(2):	0.391 *
	TH	2.00	1,133	3,200	0.354 *		
	LT	1.00	333	1,600	0.208	V/C:	0.868
Northbound	RT	1.00	251	1,600	0.053	Lost Time:	0.100
	TH	0.39	193	628	0.308	ITS:	0.000
	LT	1.61	791	2,315	0.342 *		
Eastbound	RT	1.00	440	1,600	0.104	ICU:	0.968
	TH	2.00	275	3,200	0.086		
	LT	1.00	59	1,600	0.037 *	LOS:	Е

Data/Times	PM PEAK HOUR
Date/Time:	PINI PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	46	0	0.000	N-S(1):	0.428 *
	TH	2.00	281	3,200	0.102 *	N-S(2):	0.000
	LT	1.00	79	1,600	0.049	E-W(1):	0.662 *
Westbound	RT	1.00	43	1,600	0.002	E-W(2):	0.226
	TH	2.00	539	3,200	0.168		
	LT	1.00	262	1,600	0.164 *	V/C:	1.090
Northbound	RT	1.00	652	1,600	0.326 *	Lost Time:	0.100
	TH	0.58	187	935	0.200	ITS:	0.000
	LT	1.42	453	2,039	0.222		
Eastbound	RT	1.00	975	1,600	0.498 *	ICU:	1.190
	TH	2.00	927	3,200	0.290		
	LT	1.00	92	1,600	0.058	LOS:	F

^{* -} Denotes critical movement

Intersection: 10 - I-210 WB Off-ramp & Central Ave

Description: Existing Mitigations

Thru Lane: 1600 vph N-S Split Phase: Υ 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

CAPACITY V/C ICU ANALYSIS	CAPACITY	VOLUME	LANES	MVMT	APPROACH
1,600 0.004 * N-S(1): 0.213 *	1 600	7	1.00	RT	Southbound
` '	,	· · · · · · · · · · · · · · · · · · ·			Southbound
0 0.000 N-S(2): 0.000	U	0	0.00	TH	
0 0.000 E-W(1): 0.211	0	0	0.00	LT	
0 0.000 E-W(2): 0.303 *	0	8	0.00	RT	Westbound
1,600 0.300 *	1,600	472	1.00	TH	
0 0.000 V/C: 0.516	0	0	0.00	LT	
1,600 0.209 * Lost Time: 0.100	1,600	334	1.00	RT	Northbound
0 0.000 ITS: 0.000	0	0	0.00	TH	
1,600 0.186	1,600	298	1.00	LT	
0 0.000 ICU: 0.616	0	0	0.00	RT	Eastbound
1,600 0.211	1,600	334	1.00	TH	
1,600 0.003 * LOS: B	1,600	4	0.00	LT	
,	•				

Data/Times	PM PEAK HOUR
Date/Time:	PIVI PEAN HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.88	23	1,415	0.014	N-S(1):	0.155 *
	TH	0.00	0	0	0.000	N-S(2):	0.000
	LT	0.12	3	185	0.016 *	E-W(1):	0.259
Westbound	RT	0.00	10	0	0.000	E-W(2):	0.312 *
	TH	1.00	483	1,600	0.308 *		
	LT	0.00	0	0	0.000	V/C:	0.467
Northbound	RT	1.00	165	1,600	0.103	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	222	1,600	0.139 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.567
	TH	1.00	408	1,600	0.259		
	LT	0.00	6	1,600	0.004 *	LOS:	Α

^{* -} Denotes critical movement

Intersection: 11 - Village Rd & Duarte Rd

Description: Existing Mitigations

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

i i wovements.

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.000
	TH	0.00	0	0	0.000 *	N-S(2):	0.041 *
	LT	0.00	0	0	0.000	E-W(1):	0.343 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.099
	TH	2.00	317	3,200	0.099		
	LT	1.00	166	1,600	0.104 *	V/C:	0.384
Northbound	RT	1.00	19	1,600	0.000	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	66	1,600	0.041 *		
Eastbound	RT	0.00	262	0	0.000	ICU:	0.484
	TH	2.00	502	3,200	0.239 *		
	LT	0.00	0	0	0.000	LOS:	Α

Data/Tima:	PM PEAK HOUR
Date/Time:	PINI PEAK HOUR

MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
RT	0.00	0	0	0.000	N-S(1):	0.110
TH	0.00	0	0	0.000 *	N-S(2):	0.158 *
LT	0.00	0	0	0.000	E-W(1):	0.180 *
RT	0.00	0	0	0.000	E-W(2):	0.131
TH	2.00	420	3,200	0.131		
LT	1.00	11	1,600	0.007 *	V/C:	0.338
RT	1.00	181	1,600	0.110	Lost Time:	0.100
TH	0.00	0	0	0.000	ITS:	0.000
LT	1.00	252	1,600	0.158 *		
RT	0.00	43	0	0.000	ICU:	0.438
TH	2.00	509	3,200	0.173 *		
LT	0.00	0	0	0.000	LOS:	Α
	RT TH LT RT TH LT RT TH LT	RT 0.00 TH 0.00 LT 0.00 RT 0.00 TH 2.00 LT 1.00 RT 1.00 TH 0.00 LT 1.00 TH 0.00 LT 1.00 RT 0.00 TH 2.00	RT 0.00 0 TH 0.00 0 LT 0.00 0 RT 0.00 0 TH 2.00 420 LT 1.00 11 RT 1.00 181 TH 0.00 0 LT 1.00 252 RT 0.00 43 TH 2.00 509	RT 0.00 0 0 0 1 1 1 0.00	RT 0.00 0 0 0.000 TH 0.00 0 0 0.000 * LT 0.00 0 0 0.000 0 0.000 RT 0.000 0 0.000 0.000 0.131 0.11 0.007 * * RT 1.00 11 1,600 0.007 * * RT 1.00 181 1,600 0.110 TH 0.000 0 0.000 0 0.000 0.000 0.158 * * RT 0.00 43 0 0.000 TH 2.00 509 3,200 0.173 *	RT 0.00 0 0.000 N-S(1): TH 0.00 0 0.000 * N-S(2): LT 0.00 0 0.000 E-W(1): RT 0.00 0 0.000 E-W(2): TH 2.00 420 3,200 0.131 L-W(2): RT 1.00 11 1,600 0.007 * V/C: RT 1.00 181 1,600 0.110 Lost Time: TH 0.00 0 0.000 ITS: LT 1.00 252 1,600 0.158 * RT 0.00 43 0 0.000 TH 2.00 509 3,200 0.173 *

^{* -} Denotes critical movement

Intersection: 9 - Buena Vista St & Duarte Rd
Description: Existing plus Project - Mitigations

RR Crossing Movements

Thru Lane: 1600 vph 1067 vph N-S Split Phase: Y
Left Lane: 1600 vph 1067 vph E-W Split Phase: N

Double Lt Penalty: 10 %

ITS: 0 %

Lost Time (% of cycle): 10 V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	102	0	0.000	N-S(1):	0.470 *
	TH	2.00	219	1,067	0.301	N-S(2):	0.000
	LT	0.00	367	1,067	0.344 *	E-W(1):	0.179
Westbound	RT	1.00	204	1,067	0.019	E-W(2):	0.268 *
	TH	2.00	198	3,200	0.062 *		
	LT	1.00	120	1,600	0.075	V/C:	0.738
Northbound	RT	0.00	94	0	0.000	Lost Time:	0.100
	TH	2.00	175	2,134	0.126 *	ITS:	0.000
	LT	1.00	42	1,600	0.026		
Eastbound	RT	1.00	29	1,600	0.005	ICU:	0.838
	TH	2.00	333	3,200	0.104		
	LT	1.00	220	1,067	0.206 *	LOS:	D
				,			

Data/Times	PM PEAK HOUR
Date/Time:	FINI FEAN HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	115	0	0.000	N-S(1):	0.417 *
	TH	2.00	282	1,067	0.259 *	N-S(2):	0.000
	LT	0.00	156	1,067	0.146	E-W(1):	0.222
Westbound	RT	1.00	377	1,067	0.280 *	E-W(2):	0.450 *
	TH	2.00	276	3,200	0.086		
	LT	1.00	128	1,600	0.080	V/C:	0.867
Northbound	RT	0.00	91	0	0.000	Lost Time:	0.100
	TH	2.00	246	2,134	0.158 *	ITS:	0.000
	LT	1.00	79	1,600	0.049		
Eastbound	RT	1.00	105	1,600	0.041	ICU:	0.967
	TH	2.00	455	3,200	0.142		
	LT	1.00	181	1,067	0.170 *	LOS:	E

^{* -} Denotes critical movement

Intersection: 10 - I-210 WB Off-ramp & Central Ave Description: Existing plus Project - Mitigations

Thru Lane: 1600 vph N-S Split Phase: Υ 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	7	1,600	0.004 *	N-S(1):	0.222 *
	TH	0.00	0	0	0.000	N-S(2):	0.000
	LT	0.00	0	0	0.000	E-W(1):	0.213
Westbound	RT	0.00	8	0	0.000	E-W(2):	0.329 *
	TH	1.00	514	1,600	0.326 *		
	LT	0.00	0	0	0.000	V/C:	0.551
Northbound	RT	1.00	348	1,600	0.218 *	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	298	1,600	0.186		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.651
	TH	1.00	336	1,600	0.213		
	LT	0.00	4	1,600	0.003 *	LOS:	В

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.88	23	1,415	0.014	N-S(1):	0.155 *
	TH	0.00	0	0	0.000	N-S(2):	0.000
	LT	0.12	3	185	0.016 *	E-W(1):	0.263
Westbound	RT	0.00	10	0	0.000	E-W(2):	0.330 *
	TH	1.00	512	1,600	0.326 *		
	LT	0.00	0	0	0.000	V/C:	0.485
Northbound	RT	1.00	209	1,600	0.131	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	222	1,600	0.139 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.585
	TH	1.00	414	1,600	0.263		
	LT	0.00	6	1,600	0.004 *	LOS:	Α

^{* -} Denotes critical movement

Intersection: 11 - Village Rd & Duarte Rd **Existing plus Project - Mitigations** Description:

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 V/C Round Off (decs.): 3

ITS: 0 %

OLA Movements: FF Movements:

Date/Time: **AM PEAK HOUR**

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
		•	_				
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.000
	TH	0.00	0	0	0.000 *	N-S(2):	0.041 *
	LT	0.00	0	0	0.000	E-W(1):	0.353 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.132
	TH	2.00	421	3,200	0.132		
	LT	1.00	166	1,600	0.104 *	V/C:	0.394
Northbound	RT	1.00	19	1,600	0.000	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	66	1,600	0.041 *		
Eastbound	RT	0.00	262	0	0.000	ICU:	0.494
	TH	2.00	535	3,200	0.249 *		
	LT	0.00	0	0	0.000	LOS:	Α

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.110
	TH	0.00	0	0	0.000 *	N-S(2):	0.158 *
	LT	0.00	0	0	0.000	E-W(1):	0.212 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.153
	TH	2.00	490	3,200	0.153		
	LT	1.00	11	1,600	0.007 *	V/C:	0.370
Northbound	RT	1.00	181	1,600	0.110	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	252	1,600	0.158 *		
Eastbound	RT	0.00	43	0	0.000	ICU:	0.470
	TH	2.00	613	3,200	0.205 *		
	LT	0.00	0	0	0.000	LOS:	Α

^{* -} Denotes critical movement

Intersection: 14 - Highland Ave & Huntington Dr Description: Existing plus Project - Mitigations

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements: NBR, SBR,

FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	31	1,600	0.007	N-S(1):	0.099
	TH	2.00	167	3,200	0.041 *	N-S(2):	0.104 *
	LT	0.00	62	1,600	0.039	E-W(1):	0.379 *
Westbound	RT	1.00	70	1,600	0.024	E-W(2):	0.343
	TH	2.00	1,056	3,200	0.330		
	LT	1.00	442	1,600	0.276 *	V/C:	0.483
Northbound	RT	1.00	327	1,600	0.000	Lost Time:	0.100
	TH	2.00	91	3,200	0.060	ITS:	0.000
	LT	0.00	101	1,600	0.063 *		
Eastbound	RT	1.00	90	1,600	0.025	ICU:	0.583
	TH	2.00	329	3,200	0.103 *		
	LT	1.00	20	1,600	0.013	LOS:	Α

Date/Time:	PM F	PEAK	HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	43	1,600	0.016	N-S(1):	0.185 *
	TH	2.00	149	3,200	0.045	N-S(2):	0.132
	LT	0.00	94	1,600	0.059 *	E-W(1):	0.528 *
Westbound	RT	1.00	46	1,600	0.000	E-W(2):	0.161
	TH	2.00	481	3,200	0.150		
	LT	1.00	256	1,600	0.160 *	V/C:	0.713
Northbound	RT	1.00	457	1,600	0.126 *	Lost Time:	0.100
	TH	2.00	149	3,200	0.090	ITS:	0.000
	LT	0.00	139	1,600	0.087		
Eastbound	RT	1.00	150	1,600	0.050	ICU:	0.813
	TH	2.00	1,176	3,200	0.368 *		
	LT	1.00	17	1,600	0.011	LOS:	D

^{* -} Denotes critical movement

Intersection: 10 - I-210 WB Off-ramp & Central Ave

Description: Future Base - Mitigations

Thru Lane: 1600 vph N-S Split Phase: Υ 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	7	1,600	0.004 *	N-S(1):	0.247 *
	TH	0.00	0	0	0.000	N-S(2):	0.000
	LT	0.00	0	0	0.000	E-W(1):	0.218
Westbound	RT	0.00	8	0	0.000	E-W(2):	0.312 *
	TH	1.00	487	1,600	0.309 *		
	LT	0.00	0	0	0.000	V/C:	0.559
Northbound	RT	1.00	361	1,600	0.226	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	388	1,600	0.243 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.659
	TH	1.00	345	1,600	0.218		
	LT	0.00	4	1,600	0.003 *	LOS:	В

Data/Tima:	PM PEAK HOUR
Date/Time:	PINI PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.89	24	1,422	0.015	N-S(1):	0.178 *
	TH	0.00	0	0	0.000	N-S(2):	0.000
	LT	0.11	3	178	0.017 *	E-W(1):	0.267
Westbound	RT	0.00	10	0	0.000	E-W(2):	0.322 *
	TH	1.00	498	1,600	0.318 *		
	LT	0.00	0	0	0.000	V/C:	0.500
Northbound	RT	1.00	173	1,600	0.108	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	258	1,600	0.161 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.600
	TH	1.00	421	1,600	0.267		
	LT	0.00	6	1,600	0.004 *	LOS:	Α

^{* -} Denotes critical movement

Intersection: 11 - Village Rd & Duarte Rd Description: Future Base - Mitigations

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
7 1.1.07.01.					.,.		
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.000
	TH	0.00	0	0	0.000 *	N-S(2):	0.057 *
	LT	0.00	0	0	0.000	E-W(1):	0.453 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.108
	TH	2.00	347	3,200	0.108		
	LT	1.00	207	1,600	0.129 *	V/C:	0.510
Northbound	RT	1.00	24	1,600	0.000	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	91	1,600	0.057 *		
Eastbound	RT	0.00	404	0	0.000	ICU:	0.610
	TH	2.00	632	3,200	0.324 *		
	LT	0.00	0	0	0.000	LOS:	В

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.127
	TH	0.00	0	0	0.000 *	N-S(2):	0.243 *
	LT	0.00	0	0	0.000	E-W(1):	0.202 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.169
	TH	2.00	542	3,200	0.169		
	LT	1.00	17	1,600	0.011 *	V/C:	0.445
Northbound	RT	1.00	211	1,600	0.127	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	388	1,600	0.243 *		
Eastbound	RT	0.00	66	0	0.000	ICU:	0.545
	TH	2.00	545	3,200	0.191 *		
	LT	0.00	0	0	0.000	LOS:	Α

^{* -} Denotes critical movement

Intersection: 9 - Buena Vista St & Duarte Rd
Description: Future plus Project - Mitigations

RR Crossing Movements

Thru Lane: 1600 vph 1067 vph N-S Split Phase: Y
Left Lane: 1600 vph 1067 vph E-W Split Phase: N

Double Lt Penalty: 10 %

ITS: 0 %

Lost Time (% of cycle): 10 V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	118	0	0.000	N-S(1):	0.661 *
	TH	2.00	308	1,067	0.399	N-S(2):	0.000
	LT	0.00	522	1,067	0.489 *	E-W(1):	0.201
Westbound	RT	1.00	234	1,067	0.000	E-W(2):	0.291 *
	TH	2.00	207	3,200	0.065 *		
	LT	1.00	136	1,600	0.085	V/C:	0.952
Northbound	RT	0.00	173	0	0.000	Lost Time:	0.100
	TH	2.00	194	2,134	0.172 *	ITS:	0.000
	LT	1.00	45	1,600	0.028		
Eastbound	RT	1.00	42	1,600	0.012	ICU:	1.052
	TH	2.00	371	3,200	0.116		
	LT	1.00	241	1,067	0.226 *	LOS:	F

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	146	0	0.000	N-S(1):	0.500 *
	TH	2.00	304	1,067	0.297 *	N-S(2):	0.000
	LT	0.00	183	1,067	0.172	E-W(1):	0.273
Westbound	RT	1.00	531	1,067	0.412 *	E-W(2):	0.622 *
	TH	2.00	309	3,200	0.097		
	LT	1.00	200	1,600	0.125	V/C:	1.122
Northbound	RT	0.00	107	0	0.000	Lost Time:	0.100
	TH	2.00	327	2,134	0.203 *	ITS:	0.000
	LT	1.00	93	1,600	0.058		
Eastbound	RT	1.00	110	1,600	0.040	ICU:	1.222
	TH	2.00	474	3,200	0.148		
	LT	1.00	224	1,067	0.210 *	LOS:	F

^{* -} Denotes critical movement

Intersection: 10 - I-210 WB Off-ramp & Central Ave Description: Future plus Project - Mitigations

Thru Lane: 1600 vph N-S Split Phase: Υ 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	7	1,600	0.004 *	N-S(1):	0.247 *
	TH	0.00	0	0	0.000	N-S(2):	0.000
	LT	0.00	0	0	0.000	E-W(1):	0.219
Westbound	RT	0.00	8	0	0.000	E-W(2):	0.339 *
	TH	1.00	529	1,600	0.336 *		
	LT	0.00	0	0	0.000	V/C:	0.586
Northbound	RT	1.00	375	1,600	0.234	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	388	1,600	0.243 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.686
	TH	1.00	347	1,600	0.219		
	LT	0.00	4	1,600	0.003 *	LOS:	В

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.89	24	1,422	0.015	N-S(1):	0.178 *
	TH	0.00	0	0	0.000	N-S(2):	0.000
	LT	0.11	3	178	0.017 *	E-W(1):	0.271
Westbound	RT	0.00	10	0	0.000	E-W(2):	0.340 *
	TH	1.00	527	1,600	0.336 *		
	LT	0.00	0	0	0.000	V/C:	0.518
Northbound	RT	1.00	217	1,600	0.136	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	258	1,600	0.161 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.618
	TH	1.00	427	1,600	0.271		
	LT	0.00	6	1,600	0.004 *	LOS:	В

^{* -} Denotes critical movement

Intersection: 11 - Village Rd & Duarte Rd
Description: Future plus Project - Mitigations

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements : FF Movements:

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	ICU ANALYSIS	
7.1.1.1.07.011		2, 120	V 0 2 0 2	<i></i>	., 0	<u> </u>	2.0.0	
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.000	
	TH	0.00	0	0	0.000 *	N-S(2):	0.057 *	
	LT	0.00	0	0	0.000	E-W(1):	0.463 *	
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.141	
	TH	2.00	451	3,200	0.141			
	LT	1.00	207	1,600	0.129 *	V/C:	0.520	
Northbound	RT	1.00	24	1,600	0.000	Lost Time:	0.100	
	TH	0.00	0	0	0.000	ITS:	0.000	
	LT	1.00	91	1,600	0.057 *			
Eastbound	RT	0.00	404	0	0.000	ICU:	0.620	
	TH	2.00	665	3,200	0.334 *			
	LT	0.00	0	0	0.000	LOS:	В	

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.127
	TH	0.00	0	0	0.000 *	N-S(2):	0.243 *
	LT	0.00	0	0	0.000	E-W(1):	0.234 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.191
	TH	2.00	612	3,200	0.191		
	LT	1.00	17	1,600	0.011 *	V/C:	0.477
Northbound	RT	1.00	211	1,600	0.127	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	1.00	388	1,600	0.243 *		
Eastbound	RT	0.00	66	0	0.000	ICU:	0.577
	TH	2.00	649	3,200	0.223 *		
	LT	0.00	0	0	0.000	LOS:	Α

^{* -} Denotes critical movement

Intersection: 14 - Highland Ave & Huntington Dr Description: Future plus Project - Mitigations

Thru Lane: 1600 vph N-S Split Phase: Ν 1600 vph E-W Split Phase : Ν Left Lane: Double Lt Penalty: 10 % Lost Time (% of cycle): 10 ITS: 0 % V/C Round Off (decs.): 3

OLA Movements: NBR, SBR,

FF Movements:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	32	1,600	0.007	N-S(1):	0.102
	TH	2.00	175	3,200	0.042 *	N-S(2):	0.107 *
	LT	0.00	64	1,600	0.040	E-W(1):	0.436 *
Westbound	RT	1.00	72	1,600	0.025	E-W(2):	0.378
	TH	2.00	1,167	3,200	0.365		
	LT	1.00	499	1,600	0.312 *	V/C:	0.543
Northbound	RT	1.00	341	1,600	0.000	Lost Time:	0.100
	TH	2.00	95	3,200	0.062	ITS:	0.000
	LT	0.00	104	1,600	0.065 *		
Eastbound	RT	1.00	93	1,600	0.026	ICU:	0.643
	TH	2.00	397	3,200	0.124 *		
	LT	1.00	21	1,600	0.013	LOS:	В

Data/Time.	PM PEAK HOUR
Date/Time:	PIWI PEAN HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	44	1,600	0.016	N-S(1):	0.212 *
	TH	2.00	154	3,200	0.046	N-S(2):	0.135
	LT	0.00	97	1,600	0.061 *	E-W(1):	0.579 *
Westbound	RT	1.00	47	1,600	0.000	E-W(2):	0.208
	TH	2.00	629	3,200	0.197		
	LT	1.00	268	1,600	0.168 *	V/C:	0.791
Northbound	RT	1.00	509	1,600	0.151 *	Lost Time:	0.100
	TH	2.00	157	3,200	0.094	ITS:	0.000
	LT	0.00	143	1,600	0.089		
Eastbound	RT	1.00	154	1,600	0.052	ICU:	0.891
	TH	2.00	1,316	3,200	0.411 *		
	LT	1.00	18	1,600	0.011	LOS:	D

^{* -} Denotes critical movement

UNSIGNALIZED INTERSECTIONS LEVEL OF SERVICE

Intersection												
Int Delay, s/veh	1.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LUL	4	בטול	1100	4	TIDIC	HUL	414	אוטוו	UDL	414	ODIT
Traffic Vol, veh/h	5	3	18	27	2	39	8	500	31	10	647	15
Future Vol, veh/h	5	3	18	27	2	39	8	500	31	10	647	15
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	_	_	None	_	-	None
Storage Length	_	_	-	-	_	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	_
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	5	3	20	29	2	42	9	543	34	11	703	16
Major/Minor N	/linor2			Minor1			Major1		N	//ajor2		
Conflicting Flow All	1024	1328	360	953	1319	289	719	0	0	577	0	0
Stage 1	733	733	-	578	578	-	-	-	-	-	-	-
Stage 2	291	595	-	375	741	-	-	-	-	-	-	-
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-
Pot Cap-1 Maneuver	190	154	637	214	156	708	878	-	-	993	-	-
Stage 1	378	424	-	468	499	-	-	-	-	-	-	-
Stage 2	693	491	-	618	421	-	-	-		-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	172	149	637	199	151	708	878	-	-	993	-	-
Mov Cap-2 Maneuver	172	149	-	199	151	-	-	-	-	-	-	-
Stage 1	372	416	-	461	492	-	-	-	-	-	-	-
Stage 2	639	484	-	583	413	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	16.7			18.9			0.2			0.2		
HCM LOS	С			С								
Minor Lane/Major Mvm	t	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		878	-	-		333	993	-	_			
HCM Lane V/C Ratio		0.01	_			0.222		_	_			
HCM Control Delay (s)		9.1	0.1	_	16.7	18.9	8.7	0.1	-			
HCM Lane LOS		A	A	-	C	C	A	A	_			
HCM 95th %tile Q(veh)		0	-	_	0.3	0.8	0	-	-			

Intersection												
Int Delay, s/veh 41	.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			₽		ች		7		4	
Traffic Vol, veh/h	4	334	0	0	472	8	298	1	334	0	0	7
Future Vol, veh/h	4	334	0	0	472	8	298	1	334	0	0	7
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	535	-	0	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	363	0	0	513	9	324	1	363	0	0	8
Major/Minor	Major1		ı	Major2			Minor1			Minor2		
Conflicting Flow All	522	0	<u>-</u>	-	_	0	893	893	363	1071	889	518
Stage 1	-	-	_	_	_	-	371	371	-	518	518	-
Stage 2	_	_	_	_	_	_	522	522	<u>-</u>	553	371	_
Critical Hdwy	4.12	_	_	_	_	_	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	_	_	_	_	_	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	_	_	-	_	_	_	6.12	5.52	-	6.12	5.52	_
Follow-up Hdwy	2.218	_	_	_	_	_			3 318	3.518		3.318
Pot Cap-1 Maneuver	1044	_	0	0	_	_	~ 262	281	682	198	282	558
Stage 1	-	-	0	0	-	-	649	620	-	541	533	-
Stage 2	_	-	0	0	_	_	538	531	-	517	620	-
Platoon blocked, %		-			_	-						
Mov Cap-1 Maneuver	1044	-	-	-	-	-	~ 258	280	682	92	281	558
Mov Cap-2 Maneuver	-	-	-	-	-		~ 258	280	-	92	281	-
Stage 1	-	-	-	-	-	-	646	617	-	538	533	-
Stage 2	-	-	-	-	-	-	531	531	-	240	617	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0			94.4			11.5		
HCM LOS	0.1			- 0			54.4 F			В		
Minor Lane/Major Mvmt	NBLn11	VBLn2	EBL	EBT	WBT	WBR :	SBLn1					
Capacity (veh/h)	258	682	1044				558					
HCM Lane V/C Ratio		0.532		_	-	_	0.014					
HCM Control Delay (s)	182.2	16.1	8.5	0	_	_	11.5					
HCM Lane LOS	F	C	A	A	_	_	В					
HCM 95th %tile Q(veh)	15.9	3.2	0	-	_	-	0					
Notes												
	, ¢. D	day, s	O	20-	0-:-	mulati.	Net D	a.fi.a. = -!	*. 41	!		in minter
 Volume exceeds capacity 	y \$: D€	elay exc	ceeds 30	JUS	+: Com	putation	I NOT D	etined	:: All	major v	voiume	in platoor

Intersection						
Int Delay, s/veh	4.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	בטול	YVDL	↑ ↑	NDL Š	TIDIX
Traffic Vol, veh/h	502	262	166	317	66	19
Future Vol, veh/h	502	262	166	317	66	19
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		- -	None
Storage Length	_	-	80	-	0	0
Veh in Median Storage,		_	-	0	0	-
Grade, %	0	_	_	0	0	<u>-</u>
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	546	285	180	345	72	21
Major/Minor M	lajor1	1	Major2	N	/linor1	
Conflicting Flow All	0	0	831	0	1222	416
Stage 1	_	_	-	_	689	-
Stage 2	_	_	_	_	533	_
Critical Hdwy	_	_	4.14	_	6.84	6.94
Critical Hdwy Stg 1	_	_	-	_	5.84	-
Critical Hdwy Stg 2	_	_	_	_	5.84	_
Follow-up Hdwy	_	_	2.22	_	3.52	3.32
Pot Cap-1 Maneuver	_	_	797	_	172	585
Stage 1	_	_	101	_	460	-
Stage 2	_		_	_	553	_
Platoon blocked, %	_	_	-	-	555	_
		_	797		133	585
Mov Cap-1 Maneuver	-	-		-		
Mov Cap-2 Maneuver	-	-	-	-	133	-
Stage 1	-	-	-	-	356	-
Stage 2	-	-	-	-	553	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		3.7		49.1	
HCM LOS	U		0.1		±3.1	
I IOW LOG						
Minor Lane/Major Mvmt	<u> </u>	NBLn11	VBLn2	EBT	EBR	WBL
Capacity (veh/h)		133	585	-	-	797
HCM Lane V/C Ratio		0.539		_	_	0.226
HCM Control Delay (s)		60	11.4	-	-	
HCM Lane LOS		F	В	_	-	В
HCM 95th %tile Q(veh)		2.6	0.1	_	-	0.9

Intersection		
Intersection Delay, s/veh	7.8	
Intersection LOS	Α	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	46	18	0	4	11	16	5	8	2	91	5	28
Future Vol, veh/h	46	18	0	4	11	16	5	8	2	91	5	28
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	50	20	0	4	12	17	5	9	2	99	5	30
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	7.9			7.2			7.4			8		
HCM LOS	Α			Α			Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	33%	72%	13%	73%	
Vol Thru, %	53%	28%	35%	4%	
Vol Right, %	13%	0%	52%	23%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	15	64	31	124	
LT Vol	5	46	4	91	
Through Vol	8	18	11	5	
RT Vol	2	0	16	28	
Lane Flow Rate	16	70	34	135	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.019	0.084	0.037	0.155	
Departure Headway (Hd)	4.205	4.366	3.966	4.137	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	839	810	886	860	
Service Time	2.293	2.451	2.065	2.197	
HCM Lane V/C Ratio	0.019	0.086	0.038	0.157	
HCM Control Delay	7.4	7.9	7.2	8	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.1	0.3	0.1	0.5	

Duarte Station 12/17/2018 Synchro 10 Report Fehr & Peers Page 4

Intersection												
Int Delay, s/veh	2.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			414			414	
Traffic Vol, veh/h	23	2	51	0	2	13	5	348	3	90	700	28
Future Vol, veh/h	23	2	51	0	2	13	5	348	3	90	700	28
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	25	2	55	0	2	14	5	378	3	98	761	30
Major/Minor N	Minor2			Minor1			Major1		N	Major2		
Conflicting Flow All	1172	1363	396	968	1377	191	791	0	0	381	0	0
Stage 1	972	972	-	390	390	-	-	-	-	-	-	-
Stage 2	200	391	-	578	987	-	-	-	-	-	-	-
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	_
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-
Pot Cap-1 Maneuver	148	147	603	208	144	818	825	-	-	1174	-	-
Stage 1	271	329	-	606	606	-	-	-	-	-	-	-
Stage 2	783	606	-	468	324	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	126	124	603	164	121	818	825	-	-	1174	-	-
Mov Cap-2 Maneuver	126	124	-	164	121	-	-	-	-	-	-	-
Stage 1	269	280	-	601	601	-	-	-	-	-	-	-
Stage 2	761	601	-	358	275	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	24.3			13.1			0.1			1.3		
HCM LOS	С			В								
Minor Lane/Major Mvm	t	NBL	NBT	NRRI	EBLn1V	VRI n1	SBL	SBT	SBR			
Capacity (veh/h)		825	-	-	268	463	1174	- 100	ODIN			
HCM Lane V/C Ratio		0.007	_			0.035		-	-			
HCM Control Delay (s)		9.4	0	-	24.3	13.1	8.3	0.5	-			
HCM Lane LOS		9.4 A	A	-	24.3 C	13.1 B	0.3 A	0.5 A	_			
HCM 95th %tile Q(veh)		0	-		1.3	0.1	0.3	-				
HOW JOHN JOHN Q(VEH)		U	_	<u>-</u>	1.3	0.1	0.0	_				

Intersection												
Int Delay, s/veh	1.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	LDI	1100	4	TIDIC	TIDE	413	אוטוו	UDL	414	ODIT
Traffic Vol, veh/h	2	8	38	16	1	24	3	737	27	30	418	23
Future Vol, veh/h	2	8	38	16	1	24	3	737	27	30	418	23
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	_	None	-	-	None	-	_	None
Storage Length	-	-	-	-	_	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	2	9	41	17	1	26	3	801	29	33	454	25
Major/Minor N	/linor2			Minor1			Major1		N	//ajor2		
Conflicting Flow All	940	1369	240	1120	1367	415	479	0	0	830	0	0
Stage 1	533	533	-	822	822	-	-	-	-	-	-	-
Stage 2	407	836	-	298	545	-	-	-	-	-	-	-
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-
Pot Cap-1 Maneuver	218	145	761	161	146	586	1080	-		798	-	-
Stage 1	498	523	-	334	386	-	-	-	-	-	-	-
Stage 2	592	381	-	686	517	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	197	136	761	138	137	586	1080	-	-	798	-	-
Mov Cap-2 Maneuver	197	136	-	138	137	-	-	-	-	-	-	-
Stage 1	496	493	-	332	384	-	-	-	-	-	-	-
Stage 2	561	379	-	601	488	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	15.2			22.5			0			0.8		
HCM LOS	С			С								
Minor Lane/Major Mvm	t	NBL	NBT	NBR I	EBLn1V	WBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1080	-	-		250	798	-	-			
HCM Lane V/C Ratio		0.003	-	_		0.178		_	_			
HCM Control Delay (s)		8.3	0	-	15.2	22.5	9.7	0.2	-			
HCM Lane LOS		Α	A	-	С	С	Α	Α	-			
HCM 95th %tile Q(veh)		0	-	-	0.4	0.6	0.1	-	-			

Intersection												
Int Delay, s/veh 28	.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स			(Î		ř		7		4	
Traffic Vol, veh/h	6	408	0	0	483	10	222	4	165	3	0	23
Future Vol, veh/h	6	408	0	0	483	10	222	4	165	3	0	23
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	535	-	0	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	7	443	0	0	525	11	241	4	179	3	0	25
												_,
Major/Minor	or/Minor Major1 Major2					ľ	Minor1			Minor2		
Conflicting Flow All	536	0	_	-	_	0	1000	993	443	1080	988	531
Stage 1	-	_	_	_	_	-	457	457	-	531	531	-
Stage 2	_	_	_	_	_	_	543	536	_	549	457	_
Critical Hdwy	4.12	_	_	_	_	_	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	7.12	_	_	_	_	_	6.12	5.52	0.22	6.12	5.52	0.22
Critical Hdwy Stg 2	_	_	_	_	_	_	6.12	5.52	_	6.12	5.52	
Follow-up Hdwy	2.218	_	_	_	_	_		4.018			4.018	3 318
Pot Cap-1 Maneuver	1032	-	0	0	_	_	~ 222	245	615	196	247	548
Stage 1	1032	_	0	0	_	_	583	568	013	532	526	J40 -
Stage 1		-	0	0	_	-	524	523	_	520	568	-
Platoon blocked, %	-	_	U	U	_	_	524	525	_	320	500	-
	1032				_	_	~ 210	243	615	136	245	548
Mov Cap-1 Maneuver Mov Cap-2 Maneuver		-	-	-	-		~ 210	243	010	136	245	D40 -
•	-	_	-	-	_	-	578	563	-	527	526	
Stage 1	-	-	-	_		-	500	523	-	362	563	-
Stage 2	<u>-</u>	-	-	-	-	-	500	523	-	302	503	-
Approach	EB			WB			NB			SB		
	0.1			0			94.9			14.5		
HCM Control Delay, s	0.1			U								
HCM LOS							F			В		
Ain 1 /NA - ' NA 1	ND: 41	UDL C	EDI	EDT	MOT	WED	2DL 4					
Minor Lane/Major Mvmt	NBLn11		EBL	EBT	WBT	WBR						
Capacity (veh/h)	210	615	1032	-	-	-	406					
HCM Lane V/C Ratio		0.292		-	-	-	0.07					
HCM Control Delay (s)	155.6	13.2	8.5	0	-	-	14.5					
ICM Lane LOS	F	В	Α	Α	-	-	В					
HCM 95th %tile Q(veh)	11.7	1.2	0	-	-	-	0.2					
Notes												
: Volume exceeds capacity	pacity \$: Delay exceeds 300s		+: Computation Not Defined				*: All major volume in platoon					
volume exceeds capacity	acity \$: Delay exceeds 300s -		+. CUIII	pulation	ו ואטנ ט	eiiileu	. All major volume in platoon					

Duarte Station 12/17/2018 Synchro 10 Report Fehr & Peers Page 2

Intersection							
Int Delay, s/veh	13.6						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	↑	LDK	VVDL	**************************************	NDL	INDIC	
Traffic Vol, veh/h	T → 509	43	11	TT 420	252	181	
Future Vol, veh/h	509	43	11	420	252	181	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	80	-	0	0	
Veh in Median Storage,	# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	553	47	12	457	274	197	
Major/Minor N	1ajor1	1	Major2	N	/linor1		
Conflicting Flow All	0	0	600	0	830	300	
Stage 1	-	-	-	-	577	-	
Stage 2	-	-	-	-	253	-	
Critical Hdwy	-	-	4.14	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	-	-	2.22	-	3.52	3.32	
Pot Cap-1 Maneuver	-	-	973	-	308	696	
Stage 1	-	-	-	-	525	-	
Stage 2	-	-	-	-	766	-	
Platoon blocked, %	-	-	070	-	204	COC	
Mov Cap-1 Maneuver	-	-	973	-	304	696	
Mov Cap-2 Maneuver	-	-	-	-	304 519	-	
Stage 1 Stage 2	-	-	-	-	766	-	
Slaye Z	<u>-</u>	_	-	<u>-</u>	700	_	
Approach	EB		WB		NB		
HCM Control Delay, s	0		0.2		44.3		
HCM LOS					E		
Minor Lane/Major Mvmt	t1	NBLn11	NBLn2	EBT	EBR	WBL	WBT
Capacity (veh/h)		304	696	-	-	973	-
HCM Lane V/C Ratio		0.901		-	-	0.012	-
HCM Control Delay (s)		67.4	12.2	-	-	8.7	-
HCM Lane LOS		F	В	-	-	Α	-
HCM 95th %tile Q(veh)		8.4	1.2	-	-	0	-

Intersection	
Intersection Delay, s/veh	7.5
Intersection LOS	Α

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	32	18	1	0	22	29	1	9	3	45	14	35
Future Vol, veh/h	32	18	1	0	22	29	1	9	3	45	14	35
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	35	20	1	0	24	32	1	10	3	49	15	38
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB			SB		
Opposing Approach	WB				EB		SB			NB		
Opposing Lanes	1				1		1			1		
Conflicting Approach Left	SB				NB		EB			WB		
Conflicting Lanes Left	1				1		1			1		
Conflicting Approach Right	NB				SB		WB			EB		
Conflicting Lanes Right	1				1		1			1		
HCM Control Delay	7.7				7.1		7.2			7.6		
HCM LOS	Δ				Δ		Δ			Δ		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	8%	63%	0%	48%	
Vol Thru, %	69%	35%	43%	15%	
Vol Right, %	23%	2%	57%	37%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	13	51	51	94	
LT Vol	1	32	0	45	
Through Vol	9	18	22	14	
RT Vol	3	1	29	35	
Lane Flow Rate	14	55	55	102	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.016	0.066	0.059	0.114	
Departure Headway (Hd)	4.081	4.294	3.838	4.008	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	867	828	923	888	
Service Time	2.154	2.354	1.904	2.063	
HCM Lane V/C Ratio	0.016	0.066	0.06	0.115	
HCM Control Delay	7.2	7.7	7.1	7.6	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0	0.2	0.2	0.4	

Duarte Station 12/17/2018 Synchro 10 Report Fehr & Peers Page 4

Intersection												
Int Delay, s/veh	2.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			414			4 14	
Traffic Vol, veh/h	35	1	20	3	0	101	5	935	5	13	256	17
Future Vol, veh/h	35	1	20	3	0	101	5	935	5	13	256	17
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	38	1	22	3	0	110	5	1016	5	14	278	18
Major/Minor M	1inor2		- 1	Minor1			Major1		N	Major2		
Conflicting Flow All	833	1346	148	1197	1353	511	296	0	0	1021	0	0
Stage 1	315	315	-	1029	1029	-	-	-	-	-	-	-
Stage 2	518	1031	-	168	324	-	-	-	-	-	-	-
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-		-	-	-
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-
Pot Cap-1 Maneuver	261	150	872	141	149	508	1262	-	-	675	-	-
Stage 1	671	654	-	250	309	-	-	-	-	-	-	-
Stage 2	509	309	-	817	648	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	199	145	872	133	144	508	1262	-	-	675	-	-
Mov Cap-2 Maneuver	199	145	-	133	144	-	-	-	-	-	-	-
Stage 1	665	638	-	248	306	-	-	-	-	-	-	-
Stage 2	395	306	-	775	632	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	22			15.1			0			0.6		
HCM LOS	С			С								
Minor Lane/Major Mvmt		NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1262	-	-	272	470	675	-				
HCM Lane V/C Ratio		0.004	_			0.241		_	_			
HCM Control Delay (s)		7.9	0	_	22	15.1	10.4	0.1	-			
HCM Lane LOS		A	A	_	С	С	В	A	_			
HCM 95th %tile Q(veh)		0	-	_	0.8	0.9	0.1	-	-			
Δ(V G)												

Intersection												
Int Delay, s/veh	1.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			414			4 14	
Traffic Vol, veh/h	5	4	24	30	5	39	8	559	32	10	659	15
Future Vol, veh/h	5	4	24	30	5	39	8	559	32	10	659	15
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	5	4	26	33	5	42	9	608	35	11	716	16
Major/Minor N	Minor2		1	Minor1			Major1		N	/lajor2		
Conflicting Flow All	1071	1407	366	1026	1398	322	732	0	0	643	0	0
Stage 1	746	746	-	644	644	-	-	-	-	-	-	-
Stage 2	325	661	-	382	754	_	_	-	_	_	-	-
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-
Pot Cap-1 Maneuver	175	138	631	189	140	674	868	-	-	938	-	-
Stage 1	372	419	-	428	466	-	-	-	-	-	-	-
Stage 2	661	458	-	612	415	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	155	133	631	172	135	674	868	-	-	938	-	-
Mov Cap-2 Maneuver	155	133	-	172	135	-	-	-	-	-	-	-
Stage 1	366	411	-	421	459	-	-	-		-	-	-
Stage 2	602	451	-	569	407	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	17.3			23.4			0.2			0.2		
HCM LOS	С			С								
Minor Lane/Major Mvm	ıt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		868			329	275	938	_	_			
HCM Lane V/C Ratio		0.01	-	_		0.292		_	_			
HCM Control Delay (s)		9.2	0.1	_	17.3	23.4	8.9	0.1	_			
HCM Lane LOS		Α.Δ	Α	_	C	20.4 C	Α	Α	_			
HCM 95th %tile Q(veh)		0	-	_	0.4	1.2	0	-	_			
0041 /0410 3(1011)					V. 1	1.2						

section elay, s/Veh 48.1 Sement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR
Configurations Conf
Configurations Conf
ic Vol, veh/h
re Vol, veh'h
Control Free Stop Stop
Control Free Stop Stop
Channelized
age Length
in Median Storage, # - 0 0 0 0 - 0 - 0 - 0 - 0
le, %
Reduir Factor
ry Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#Flow
r/Minor
Stage 1
Stage 1
Stage 1
Stage 2
Stage 1
al Hdwy Stg 1
ral Hdwy Stg 2
Second S
Cap-1 Maneuver 1004 - 0 0 ~243 0 680 182 265 525 Stage 1 0 0 648 0 - 510 508 - Stage 2 0 0 508 0 - 512 618 - Stage 2 0 0 508 0 - 512 618 - Stage 2 0 0 508 0 - 512 618 - Stage 1 680 80 264 525 Cap-1 Maneuver 1004 ~239 - 680 80 264 525 Cap-2 Maneuver 645 - 507 508 - Stage 1 645 - 507 508 - Stage 2 501 - 226 615 - Stage 2 501 - 226 615 - Stage 2 501 - 226 615 - Stage 3 501 226 615 - Stage 4 501 226 615 - Stage 5 501 226 615 - Stage 7
Stage 1
Stage 2 - - 0 0 - 508 0 - 512 618 - Con blocked, % - <td< td=""></td<>
Cap-1 Maneuver
Cap-1 Maneuver 1004 - - - ~239 - 680 80 264 525 Cap-2 Maneuver - - - - ~239 - 80 264 - Stage 1 - - - - - 645 - 507 508 - Stage 2 - - - - - 501 - 226 615 - Oach EB WB NB SB SB I Control Delay, s 0.1 0 112.7 12 12 I LOS F B B B B B F C B B I SB B B B B B B B B B B B B B B B B B B
Cap-2 Maneuver - - - - 239 - 80 264 - Stage 1 - - - - 645 - 507 508 - Stage 2 - - - - - 501 - 226 615 - Oach EB WB NB NB SB I Control Delay, s 0.1 0 112.7 12 I LOS F B I Lane/Major Mvmt NBLn1 NBLn2 EBL EBT WBT WBR SBLn1 Bacity (veh/h) 239 680 1004 - 525 I Lane V/C Ratio 1.355 0.556 0.004 - 0.014 I Control Delay (s) 224.8 16.7 8.6 0 - 12 I Lane LOS F C A A - B 195th %tile Q(veh) 17.5 3.4 0 - 0 0 S S S S S S S S S S S S
Stage 1 - - - - 645 - 507 508 - Stage 2 - - - - - 501 - - 226 615 - Coach EB WB NB NB SB I Control Delay, s 0.1 0 112.7 12 I LOS F B I Lane/Major Mvmt NBLn1 NBLn2 EBL EBT WBT WBR SBLn1 Backety (veh/h) 239 680 1004 525 I Lane V/C Ratio 1.355 0.556 0.004 0.014 I Control Delay (s) 1 Control Delay (s) 224.8 16.7 8.6 0 12 I Lane LOS F C A A - B 195th %tile Q(veh) 17.5 3.4 0 0 S S S STANCE OF THE ARCH TO THE
Stage 2 501 226 615 - Oach
Control Delay, s
T Lane/Major Mvmt NBLn1 NBLn2 EBL EBT WBT WBR SBLn1
r Lane/Major Mvmt NBLn1 NBLn2 EBL EBT WBT WBR SBLn1 acity (veh/h) 239 680 1004 525 I Lane V/C Ratio 1.355 0.556 0.004 0.014 I Control Delay (s) 224.8 16.7 8.6 0 12 I Lane LOS F C A A - B I 95th %tile Q(veh) 17.5 3.4 0 0
acity (veh/h) 239 680 1004 525 I Lane V/C Ratio 1.355 0.556 0.004 0.014 I Control Delay (s) 224.8 16.7 8.6 0 - 12 I Lane LOS F C A A - B I 95th %tile Q(veh) 17.5 3.4 0 0
acity (veh/h) 239 680 1004 525 I Lane V/C Ratio 1.355 0.556 0.004 0.014 I Control Delay (s) 224.8 16.7 8.6 0 - 12 I Lane LOS F C A A - B I 95th %tile Q(veh) 17.5 3.4 0 0
I Lane V/C Ratio 1.355 0.556 0.004 0.014 I Control Delay (s) 224.8 16.7 8.6 0 - 12 I Lane LOS F C A A - B I 95th %tile Q(veh) 17.5 3.4 0 0
I Control Delay (s) 224.8 16.7 8.6 0 12 I Lane LOS F C A A B I 95th %tile Q(veh) 17.5 3.4 0 0
I Lane LOS F C A A B I 95th %tile Q(veh) 17.5 3.4 0 0
l 95th %tile Q(veh) 17.5 3.4 0 0 s
S
plume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *- All major volume in platoon
computation not being visited in platform

Intersection						
Int Delay, s/veh	4.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	LDIN	ሻ	^	ሻ	T T
Traffic Vol, veh/h	535	262	166	421	66	19
Future Vol, veh/h	535	262	166	421	66	19
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	_	-	80	-	0	0
Veh in Median Storage,	# 0	_	-	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	582	285	180	458	72	21
WWIIICTIOW	002	200	100	400	12	21
	ajor1		Major2		/linor1	
Conflicting Flow All	0	0	867	0	1314	434
Stage 1	-	-	-	-	725	-
Stage 2	-	-	-	-	589	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	772	-	150	570
Stage 1	-	-	-	-	440	-
Stage 2	-	-	-	-	517	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	772	-	115	570
Mov Cap-2 Maneuver	-	-	-	-	115	-
Stage 1	-	-	_	-	440	-
Stage 2	_	_	_	_	397	-
U					- • •	
A			\A/D		NID	
Approach	EB		WB		NB	
HCM Control Delay, s	0		3.1		63.2	
HCM LOS					F	
Minor Lane/Major Mvmt	1	NBLn1N	NBLn2	EBT	EBR	WBL
Capacity (veh/h)		115	570	-	-	
HCM Lane V/C Ratio		0.624		_		0.234
HCM Control Delay (s)		78	11.6	-	_	
HCM Lane LOS		F	В	-	_	В
HCM 95th %tile Q(veh)		3.1	0.1	-	_	0.9
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			• • •			

Intersection Delay, s/veh 7.9
Intersection LOS A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	46	20	0	4	17	22	5	8	2	99	5	28
Future Vol, veh/h	46	20	0	4	17	22	5	8	2	99	5	28
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	50	22	0	4	18	24	5	9	2	108	5	30
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		_
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	7.9			7.3			7.4			8.1		
HCM LOS	Α			Α			Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	33%	70%	9%	75%	
Vol Thru, %	53%	30%	40%	4%	
Vol Right, %	13%	0%	51%	21%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	15	66	43	132	
LT Vol	5	46	4	99	
Through Vol	8	20	17	5	
RT Vol	2	0	22	28	
Lane Flow Rate	16	72	47	143	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.02	0.087	0.053	0.166	
Departure Headway (Hd)	4.339	4.389	4.085	4.175	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	830	803	882	849	
Service Time	2.341	2.485	2.087	2.246	
HCM Lane V/C Ratio	0.019	0.09	0.053	0.168	
HCM Control Delay	7.4	7.9	7.3	8.1	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.1	0.3	0.2	0.6	

Intersection												
Int Delay, s/veh	2.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	EDL		EDI	WDL		WDN	NDL		NDI	ODL		SDN
Lane Configurations	22	4	50	٥	♣	13	7	41 → 512	3	90	41 7 48	31
Traffic Vol, veh/h Future Vol, veh/h	22	2	50	0	2	13	7	512	3	90	748	31
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	Slop -	Stop -	None	Stop -	Stop -	None	-	-	None	-	-	None
Storage Length	_	-	NOHE	_	_	NOHE	_	-	NOITE	_	_	NOHE
Veh in Median Storage		0	-		0	_	<u>-</u> -	0	-		0	_
Grade, %	5, # -	0		_	0	_	_	0	_	_	0	_
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	24	2	54	0	2	14	8	557	3	98	813	34
WWW. LOW	27		U7			17	U	001	J	50	010	- 7
N A - ' /N A'	N 4'		_	A' 4			M - 1 - 4			1		
	Minor2	1000		Minor1	10:-		Major1			Major2		
Conflicting Flow All	1322	1602	424	1179	1618	280	847	0	0	560	0	0
Stage 1	1026	1026	-	575	575	-	-	-	-	-	-	-
Stage 2	296	576	-	604	1043	-	-	-	-	-	-	-
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-
Pot Cap-1 Maneuver	114	105	579	146	102	717	786	-	-	1007	-	-
Stage 1	251	310	-	470	501	-	-	-	-	-	-	-
Stage 2	688	500	-	452	305	-	-	-	-	-	_	-
Platoon blocked, %	00	0.4	E70	110	00	747	700	-	-	1007	-	-
Mov Cap-1 Maneuver	93	84	579	110	82	717	786	-	-	1007	-	-
Mov Cap-2 Maneuver	93	84	-	110	82	-	-	-	-	-	-	-
Stage 1	247	253	-	463	493	-	-	-	-	-	-	-
Stage 2	661	493	-	331	249	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	31.8			15.7			0.2			1.5		
HCM LOS	D			С								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR F	EBLn1V	VBL n1	SBL	SBT	SBR			
Capacity (veh/h)		786		-	0.10	353	1007					
HCM Lane V/C Ratio		0.01	_			0.046	0.097	_	<u>-</u>			
HCM Control Delay (s)		9.6	0.1	_		15.7	9	0.7	_			
HCM Lane LOS		3.0 A	Α	<u>-</u>	D	C	A	Α	_			
HCM 95th %tile Q(veh)	0		_	1.7	0.1	0.3	-	_			
TOWN COURT FOUND COLVERN	7	- 0			1.1	0.1	0.0					

Intersection												
Int Delay, s/veh	2											
•		EST	E D.5	\A/D:	MAIST	14/55	NE	NET	NES	051	007	055
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			414			414	
Traffic Vol, veh/h	2	11	56	18	3	24	3	777	30	30	456	23
Future Vol, veh/h	2	11	56	18	3	24	3	777	30	30	456	23
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	2	12	61	20	3	26	3	845	33	33	496	25
Major/Minor N	Minor2		N	Minor1			Major1		N	/lajor2		
Conflicting Flow All	1005	1459	261	1188	1455	439	521	0	0	878	0	0
Stage 1	575	575	-	868	868	-	-	-	-	-	-	-
Stage 2	430	884	_	320	587	_	_	_	_	<u>-</u>	_	_
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14		_	4.14		
Critical Hdwy Stg 1	6.54	5.54	0.54	6.54	5.54	J.J-7	- 1.17	<u>-</u>	_	- 1.17	_	_
Critical Hdwy Stg 2	6.54	5.54	_	6.54	5.54				_	_		
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	_	_	2.22	_	_
Pot Cap-1 Maneuver	196	128	738	144	129	566	1041	_	_	765		
Stage 1	470	501	-	314	368	500	10-1	_	_	100	_	_
Stage 2	574	362	<u>-</u>	666	495	_	-	-	<u>-</u>	-	-	-
Platoon blocked, %	5/4	302	-	000	430	-	_	-	_	_	_	_
Mov Cap-1 Maneuver	174	119	738	116	120	566	1041	<u>-</u>	-	765	_	<u>-</u>
Mov Cap-1 Maneuver	174	119		116	120	500	1041	_	-	700	-	_
	467	470	-	312	366	_	-	-	-	_	-	-
Stage 1	539	360	-	559	465		-	=		_		=
Stage 2	บงช	300	-	บอย	400	_	-	_	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	16.6			28.4			0			0.9		
HCM LOS	С			D								
Minor Lane/Major Mvm	t	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1041		-	384	202	765					
HCM Lane V/C Ratio		0.003	_			0.242		_				
HCM Control Delay (s)		8.5	0	<u>-</u>	16.6	28.4	9.9	0.3	_			
HCM Lane LOS			A	_	10.0 C	20.4 D	9.9 A	0.3 A	-			
HCM 95th %tile Q(veh)		A 0		_	0.7	0.9	0.1		-			
HOIVI YOUT WITTE Q(Ven)		U	-	-	0.7	0.9	U.T	-	-			

ntersection nt Delay, s/veh	31.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations		4			4		ሻ		7		4	
raffic Vol, veh/h	6	414	0	0	512	10	222	0	209	3	0	23
uture Vol, veh/h	6	414	0	0	512	10	222	0	209	3	0	23
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	535	-	0	-	-	-
eh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
leavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
/lvmt Flow	7	450	0	0	557	11	241	0	227	3	0	25
//ajor/Minor	Major1		ľ	Major2		ľ	Minor1			Minor2		
Conflicting Flow All	568	0	_	-	_	0	1039	_	450	1141	1027	563
Stage 1	-	-	-	_	_	-	464	_	-	563	563	-
Stage 2	_	_	_	_	_	_	575	_	_	578	464	_
Critical Hdwy	4.12	_	-	_	_	-	7.12	_	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	_	-	_	_	6.12	_	-	6.12	5.52	-
Critical Hdwy Stg 2	_	_	_	_	_	_	6.12	_	_	6.12	5.52	-
Follow-up Hdwy	2.218	_	_	_	_	_	3.518	_	3.318	3.518		3 318
Pot Cap-1 Maneuver	1004	_	0	0	_	_	~ 209	0	609	178	234	526
Stage 1	-	_	0	0	_	_	578	0	-	511	509	-
Stage 2	-	_	0	0	_	_	503	0	_	501	564	_
Platoon blocked, %		_	•	•	_	_	000	•		001	001	
Nov Cap-1 Maneuver	1004	_	_	_	_	_	~ 198	_	609	111	232	526
Nov Cap-2 Maneuver	-	-	_	-	_		~ 198	_	-	111	232	-
Stage 1	-	_	_	_	_	-	573	_	_	506	509	-
Stage 2	-	-	_	-	_	-	479	_	-	311	559	-
g										<u> </u>	230	
Approach	EB			WB			NB			SB		
ICM Control Delay, s	0.1			0			101.6			15.6		
ICM LOS							F			С		
/linor Lane/Major Mvmt	: NBLn1 I	NBLn2	EBL	EBT	WBT	WBR	SBLn1					
Capacity (veh/h)	198	609	1004	-	-	-	367					
ICM Lane V/C Ratio		0.373		-	-	-	0.077					
ICM Control Delay (s)	183.7	14.4	8.6	0	_	-	15.6					
ICM Lane LOS	F	В	Α	A	-	-	С					
ICM 95th %tile Q(veh)	12.6	1.7	0	-	-	-	0.2					
lotes												

Intersection								
Int Delay, s/veh	23.4							
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	†		ሻ	^	ሻ	7		
Traffic Vol, veh/h	613	43	11	490	252	181		
Future Vol, veh/h	613	43	11	490	252	181		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Free	Free	Free	Free	Stop	Stop		
RT Channelized	-	None	-	None	-	None		
Storage Length	_	-	80	-	0	0		
Veh in Median Storage,		_	-	0	0	-		
Grade, %	0	_	_	0	0	_		
Peak Hour Factor	92	92	92	92	92	92		
Heavy Vehicles, %	2	2	2	2	2	2		
Mymt Flow	666	47	12	533	274	197		
WWW. I IOW	000	71	12	555	217	131		
Majar/Minar N	1-:1		Maia #2		1:1			
Major/Minor N Conflicting Flow All	1ajor1 0	0	Major2 713	0	<u>/linor1</u> 981	357		
		-	113		690	33 <i>1</i>		
Stage 1	-		-	-	291			
Stage 2	-	-	-	-		- - 04		
Critical Hdwy	-	-	4.14	-	6.84	6.94		
Critical Hdwy Stg 1	-	-	-	-	5.84	-		
Critical Hdwy Stg 2	-	-	-	-	5.84	-		
Follow-up Hdwy	-	-	2.22	-	3.52	3.32		
Pot Cap-1 Maneuver	-	-	883		~ 247	639		
Stage 1	-	-	-	-	459	-		
Stage 2	-	-	-	-	733	-		
Platoon blocked, %	-	-	000	-	044	000		
Mov Cap-1 Maneuver	-	-	883		~ 244	639		
Mov Cap-2 Maneuver	-	-	-	-	~ 244	-		
Stage 1	-	-	-	-	459	-		
Stage 2	-	-	-	-	723	-		
Approach	EB		WB		NB			
HCM Control Delay, s	0		0.2		85.8			
HCM LOS					F			
Minor Lane/Major Mvmt	t N	NBLn11	NBLn2	EBT	EBR	WBL	WBT	
Capacity (veh/h)		244	639	-	-	883	-	
HCM Lane V/C Ratio		1.123		-	-	0.014	-	
HCM Control Delay (s)		138	13.1	-	_	9.1	-	
HCM Lane LOS		F	В	-	_	Α	-	
HCM 95th %tile Q(veh)		12.2	1.3	-	-	0	-	
Notes								
~: Volume exceeds cap	acity	\$: Da	alay eye	eeds 30	ηης	+. Com	putation Not Defined	*: All major volume in platoon
. Volumo exceede cap	uoity	ψ. D	nay GAL	ocus o	700		patation Not Delined	. 7 th major volume in platoon

Intersection												
Intersection Delay, s/veh	7.7											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	32	24	1	0	26	33	1	9	3	69	14	35
Future Vol, veh/h	32	24	1	0	26	33	1	9	3	69	14	35
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	35	26	1	0	28	36	1	10	3	75	15	38
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
A mana a a la	ED				WD		ND			CD		

Approach	EB	WB	NB	SB	
Opposing Approach	WB	EB	SB	NB	
Opposing Lanes	1	1	1	1	
Conflicting Approach Left	SB	NB	EB	WB	
Conflicting Lanes Left	1	1	1	1	
Conflicting Approach Right	NB	SB	WB	EB	
Conflicting Lanes Right	1	1	1	1	
HCM Control Delay	7.8	7.3	7.3	7.9	
HCM LOS	Α	A	А	A	

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	8%	56%	0%	58%	
Vol Thru, %	69%	42%	44%	12%	
Vol Right, %	23%	2%	56%	30%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	13	57	59	118	
LT Vol	1	32	0	69	
Through Vol	9	24	26	14	
RT Vol	3	1	33	35	
Lane Flow Rate	14	62	64	128	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.016	0.075	0.069	0.146	
Departure Headway (Hd)	4.129	4.335	3.894	4.102	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	853	817	906	866	
Service Time	2.221	2.415	1.981	2.166	
HCM Lane V/C Ratio	0.016	0.076	0.071	0.148	
HCM Control Delay	7.3	7.8	7.3	7.9	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0	0.2	0.2	0.5	

Intersection												
Int Delay, s/veh	2.8											
• •	EBL	EBT	EDD	\\/DI	WPT	WPD	NDI	NDT	NDD	SBL	SBT	SBR
Movement Configurations	EBL		EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL		SBK
Lane Configurations	4.4	4	00	2	- ♣	404	_	€1	_	40	€ 1}	10
Traffic Vol, veh/h	44	1	26	3	0	101	5	1036	5	13	416	16
Future Vol, veh/h	44	1	26	3	0	101	5	1036	5	13	416	16
Conflicting Peds, #/hr		0	0	0	0	0	0	0	0	0	0	0
Sign Control RT Channelized	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free -	Free	Free	Free	Free
	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	_		-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, % Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
	92	2	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, % Mvmt Flow	48	1	28	3	0	110	5	1126	5	14	452	17
IVIVIIIL FIOW	40		20	J	U	110	5	1120	ວ	14	432	17
Major/Minor N	/linor2			Minor1		ı	Major1		N	//ajor2		
Conflicting Flow All	1062	1630	235	1394	1636	566	469	0	0	1131	0	0
Stage 1	489	489	-	1139	1139	-	-	-	-	-	-	-
Stage 2	573	1141	-	255	497	-	-	-	-	-	-	-
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-		4.14	-	-
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-
Pot Cap-1 Maneuver	178	101	767	101	100	467	1089	-	-	613	-	-
Stage 1	529	548	-	214	274	-	-	-	-	-	-	-
Stage 2	472	274	-	727	543	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	132	97	767	93	96	467	1089	-	-	613	-	-
Mov Cap-2 Maneuver	132	97	-	93	96	-	-	-	-	-	-	-
Stage 1	523	531	-	211	271	-	-	-	-	-	-	-
Stage 2	357	271	-	677	526	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	36.9			16.8			0			0.5		
HCM LOS	E			C						3.0		
	_											
Mineral and /Marin Ma		NDI	NDT	NDD 1	-DL 41	VDL 4	001	OPT	ODD			
Minor Lane/Major Mvmt	ι	NBL	NBT		EBLn1V		SBL	SBT	SBR			
Capacity (veh/h)		1089	-	-	188	418	613	-	-			
HCM Lane V/C Ratio		0.005	-	-	0.41		0.023	-	-			
HCM Control Delay (s)		8.3	0	-	36.9	16.8	11	0.2	-			
HCM Lane LOS		A	Α	-	E	C	В	Α	-			
HCM 95th %tile Q(veh)		0	-	-	1.8	1.1	0.1	-	-			

Intersection												
Int Delay, s/veh	1.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL		LDIX	WDL		WDIX	NDL	414	NDIX	ODL	4Î∌	אומט
Traffic Vol, veh/h	5	4	19	28	♣	40	8	568	32	10	908	15
Future Vol, veh/h	5	3	19	28	2	40	8	568	32	10	908	15
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	Olop -	Olop -	None	- Olop	-	None	-	-	None	-	-	None
Storage Length	_	_	-	_	_	-	_	_	-	<u>-</u>	_	-
Veh in Median Storage	.# -	0	_	_	0	_	_	0	_	_	0	_
Grade, %	, "	0	_	_	0	_	_	0	_	_	0	_
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	5	3	21	30	2	43	9	617	35	11	987	16
			~ '		_	10		V 11	- 00		301	10
Majay/Mina-	Aire s = O			Ain c =4			11-1-1			1-10		
	Minor2	4007		Minor1	4070		Major1			Major2		
Conflicting Flow All	1345	1687	502	1170	1678	326	1003	0	0	652	0	0
Stage 1	1017	1017	-	653	653	-	-	-	-	-	-	-
Stage 2	328	670	-	517	1025	-	-	-	-	-	-	-
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.54	5.54	2 22	6.54	5.54	2 20	0.00	-	-	2.00	-	-
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-
Pot Cap-1 Maneuver	110	93	515	148	94 462	670	686	-	-	930	-	-
Stage 1	254	313 454	-	423	311	-	-	-	-	-	-	-
Stage 2	659	404	-	509	SII	-	-	-	-		-	-
Platoon blocked, %	97	89	515	133	90	670	686	-	-	930	-	-
Mov Cap-1 Maneuver Mov Cap-2 Maneuver	97	89		133	90	0/0	000	-		930	-	-
Stage 1	249	305	-	414	452	_	_	_	_	_	-	-
Stage 1 Stage 2	600	444	-	470	303	_	=	-				-
Slaye 2	000	444	-	4/0	303	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	23.8			26.9			0.2			0.2		
HCM LOS	С			D								
Minor Lane/Major Mvm	t	NBL	NBT	NBR F	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		686		-	221	239	930					
HCM Lane V/C Ratio		0.013	-			0.318		_	_			
HCM Control Delay (s)		10.3	0.1	_	23.8	26.9	8.9	0.1	_			
HCM Lane LOS		В	Α	_	23.0 C	20.3 D	Α	Α	_			
HCM 95th %tile Q(veh)		0	-	_	0.5	1.3	0	-	_			
1.5W 55W 70W Q(VOII)					3.0	1.0						

ntersection nt Delay, s/veh	94.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations		र्स			î,		*		7		44	
Fraffic Vol, veh/h	4	345	0	0	487	8	388	0	361	0	0	7
uture Vol, veh/h	4	345	0	0	487	8	388	0	361	0	0	7
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	535	-	0	-	-	-
/eh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	375	0	0	529	9	422	0	392	0	0	8
Major/Minor	Major1		ľ	Major2		ľ	Minor1			Minor2		
Conflicting Flow All	538	0	-	-	-	0	921	-	375	1113	917	534
Stage 1	-	-	_	-	-	-	383	-	-	534	534	_
Stage 2	_	_	_	_	_	_	538	_	_	579	383	_
Critical Hdwy	4.12	-	-	_	_	-	7.12	_	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	_	_	_	_	6.12	_	-	6.12	5.52	-
Critical Hdwy Stg 2	_	_	_	_	_	_	6.12	_	-	6.12	5.52	_
Follow-up Hdwy	2.218	_	_	_	_	_	3.518	_	3 318	3.518		3.318
Pot Cap-1 Maneuver	1030	_	0	0	_		~ 251	0	671	186	272	546
Stage 1	-	_	0	0	_	_	640	0	-	530	524	-
Stage 2	-	_	0	0	_	_	527	0	_	501	612	_
Platoon blocked, %		_	J	•	_	_	02.			001	012	
Mov Cap-1 Maneuver	1030	_	-	_	_	-	~ 246	_	671	77	271	546
Mov Cap-2 Maneuver	-	_	_	_	_		~ 246	_	-	77	271	-
Stage 1	-	_	_	_	_	_	637	_	_	527	524	_
Stage 2	<u>-</u>	_	_	_	_	_	520	_	_	207	609	_
olugo L							020				000	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0			201.8			11.7		
HCM LOS							F			В		
Minor Lane/Major Mvm	t NBLn1	NBLn2	EBL	EBT	WBT	WBR	SBLn1					
Capacity (veh/h)	246	671	1030	-	-	-	546					
HCM Lane V/C Ratio		0.585	0.004	_	-	_	0.014					
HCM Control Delay (s)	\$ 373.1	17.6	8.5	0	_	_	11.7					
HCM Lane LOS	F	C	A	A	_	_	В					
HCM 95th %tile Q(veh)		3.8	0	-	_	-	0					
Notes												

Intersection								
Int Delay, s/veh	22.4							
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	∱ }		ሻ	^	ሻ	7		
Traffic Vol, veh/h	632	404	207	347	91	24		
Future Vol, veh/h	632	404	207	347	91	24		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Free	Free	Free	Free	Stop	Stop		
RT Channelized	-	None	-	None	-	None		
Storage Length	-	-	80	-	0	0		
Veh in Median Storage	e, # 0	-	-	0	0	-		
Grade, %	0	-	-	0	0	-		
Peak Hour Factor	92	92	92	92	92	92		
Heavy Vehicles, %	2	2	2	2	2	2		
Mvmt Flow	687	439	225	377	99	26		
Major/Minor	Major1	1	Major2	N	Minor1			
Conflicting Flow All	0		1126	0	1546	563		
Stage 1	-	-	-	-	907	-		
Stage 2	-	-	-	-	639	-		
Critical Hdwy	-	-	4.14	-	6.84	6.94		
Critical Hdwy Stg 1	-	-	-	-	5.84	-		
Critical Hdwy Stg 2	-	-	-	-	5.84	-		
Follow-up Hdwy	-	-	2.22	-	3.52	3.32		
Pot Cap-1 Maneuver	-	-	616	-	105	470		
Stage 1	-	-	-	-	354	-		
Stage 2	-	-	-	-	488	-		
Platoon blocked, %	-	-		-				
Mov Cap-1 Maneuver	-	-	616	-	~ 67	470		
Mov Cap-2 Maneuver	-	-	-	-	~ 67	-		
Stage 1	-	-	-	-	354	-		
Stage 2	-	-	-	-	310	-		
Approach	EB		WB		NB			
HCM Control Delay, s	0		5.3	\$	305.9			
HCM LOS					F			
Minor Lane/Major Mvn	nt I	NBLn11	NBLn2	EBT	EBR	WBL	WBT	
Capacity (veh/h)		67	470	-		616	-	
HCM Lane V/C Ratio			0.056	_	_	0.365	<u>-</u>	
HCM Control Delay (s) \$	383.1	13.1	_	_	14.2	-	
HCM Lane LOS	, Ψ	F	В	_	_	В	<u>-</u>	
HCM 95th %tile Q(veh	1)	8.4	0.2	-	-	1.7	-	
`	.,	J.,						
Notes		Φ			20.		L.C. N. D.C.	* All
~: Volume exceeds ca	pacity	\$: De	elay exc	ceeds 30	JUS	+: Com	putation Not Defined	*: All major volume in platoon

ntersection	
ntersection Delay, s/veh	7.8
ntersection LOS	Α

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	47	19	0	4	11	17	5	8	2	94	5	29
Future Vol, veh/h	47	19	0	4	11	17	5	8	2	94	5	29
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	51	21	0	4	12	18	5	9	2	102	5	32
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	7.9			7.2			7.4			8		
HCM LOS	Α			Α			Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	33%	71%	12%	73%	
Vol Thru, %	53%	29%	34%	4%	
Vol Right, %	13%	0%	53%	23%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	15	66	32	128	
LT Vol	5	47	4	94	
Through Vol	8	19	11	5	
RT Vol	2	0	17	29	
Lane Flow Rate	16	72	35	139	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.019	0.087	0.039	0.16	
Departure Headway (Hd)	4.214	4.374	4.067	4.142	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	836	808	886	858	
Service Time	2.308	2.461	2.067	2.207	
HCM Lane V/C Ratio	0.019	0.089	0.04	0.162	
HCM Control Delay	7.4	7.9	7.2	8	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.1	0.3	0.1	0.6	

Intersection												
Int Delay, s/veh	2.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			414			414	
Traffic Vol, veh/h	24	2	53	0	2	13	5	367	3	93	789	29
Future Vol, veh/h	24	2	53	0	2	13	5	367	3	93	789	29
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	26	2	58	0	2	14	5	399	3	101	858	32
Major/Minor N	Minor2		<u> </u>	Minor1			Major1		N	//ajor2		
Conflicting Flow All	1287	1488	445	1043	1503	201	890	0	0	402	0	0
Stage 1	1076	1076	-	411	411	-	-	-	-	-	-	-
Stage 2	211	412	-	632	1092	-	-	-	-	-	-	-
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-
Pot Cap-1 Maneuver	121	123	561	184	120	806	757	-	-	1153	-	-
Stage 1	234	294	-	589	593	-	-	-	-	-	-	-
Stage 2	771	593	-	435	289	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	101	101	561	140	98	806	757	-	-	1153	-	-
Mov Cap-2 Maneuver	101	101	-	140	98	-	-	-	-	-	-	-
Stage 1	232	243	-	584	588	-	-	-	-	-	-	-
Stage 2	748	588	-	320	239	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	30.7			14.1			0.1			1.4		
HCM LOS	D			В								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		757	-	-	224	411	1153	-	-			
HCM Lane V/C Ratio		0.007	-	-	0.383		0.088	-	-			
HCM Control Delay (s)		9.8	0	-	30.7	14.1	8.4	0.6	-			
HCM Lane LOS		Α	Α	-	D	В	Α	Α	-			
HCM 95th %tile Q(veh))	0	-	-	1.7	0.1	0.3	-	-			

Intersection												
Int Delay, s/veh	2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			414			414	
Traffic Vol, veh/h	2	8	39	17	1	25	3	1015	28	31	496	24
Future Vol, veh/h	2	8	39	17	1	25	3	1015	28	31	496	24
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	_	_	-	_	_	-	_	_	-	_	_	-
Veh in Median Storage	.# -	0	-	-	0	-	-	0	-	-	0	_
Grade, %	, -	0	-	_	0	-	_	0	_	_	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	2	9	42	18	1	27	3	1103	30	34	539	26
Major/Minor N	/linor2			Minor1			Major1		N	Major2		
Conflicting Flow All	1178	1759	283	1466	1757	567	565	0	0	1133	0	0
Stage 1	620	620	203	1124	1124	507	505	-	-	-	-	-
Stage 1 Stage 2	558	1139	-	342	633	-	-	_	-	-	-	-
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	<u>-</u>	4.14	-	-
Critical Hdwy Stg 1	6.54	5.54	0.94	6.54	5.54	0.94	4.14	_	_	4.14	_	_
Critical Hdwy Stg 2	6.54	5.54	_	6.54	5.54	-	-	<u>-</u>	<u>-</u>	-	_	-
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	_	_	2.22	_	_
Pot Cap-1 Maneuver	146	84	714	89	84	467	1003	_	-	612	_	_
Stage 1	442	478	- 14	219	279	407	-	_	_	- 012	_	_
Stage 2	482	274	_	646	472	_	_		_	_	_	_
Platoon blocked, %	102	£17		0-10	112			_	_		_	_
Mov Cap-1 Maneuver	127	77	714	71	77	467	1003	-	-	612	_	_
Mov Cap-2 Maneuver	127	77	-	71	77	01	-	_	_	-	_	_
Stage 1	438	439	-	217	277	-	-	-	-	-	-	-
Stage 2	449	272	_	547	434	_	_	_	_	_	_	_
g -		_										
Approach	EB			WB			NB			SB		
HCM Control Delay, s	20.8			42.7			0			1		
HCM LOS	20.0 C			42.1			U			1		
	J											
Minor Lane/Major Mvm	t	NBL	NBT	NRR	EBLn1V	WRI n1	SBL	SBT	SBR			
Capacity (veh/h)		1003		- 11011	281	141	612	- 051	יופט			
HCM Lane V/C Ratio		0.003	_	_		0.331		-	_			
HCM Control Delay (s)		8.6	0	<u>-</u>	20.8	42.7	11.2	0.4	<u>-</u>			
HCM Lane LOS		0.0 A	A	_	20.6 C	42.7 E	11.2 B	0.4 A	_			
HCM 95th %tile Q(veh)		0	- -	-	0.7	1.3	0.2	- -	-			
How Jour Joure Q(Veri)		U			0.1	1.5	0.2	_				

Intersection												
Int Delay, s/veh 49.5	5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			1>		ች		7		4	
Fraffic Vol, veh/h	6	421	0	0	498	10	258	0	173	3	0	24
uture Vol, veh/h	6	421	0	0	498	10	258	0	173	3	0	24
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	_	_	None	_	-	None	-	-	None	-	-	None
Storage Length	_	_	-	_	-	-	535	_	0	-	_	-
Veh in Median Storage, #	-	0	_	-	0	_	_	0	-	-	0	-
Grade, %	_	0	_	_	0	_	_	0	-	-	0	_
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Nymt Flow	7	458	0	0	541	11	280	0	188	3	0	26
Will to the state of the state	•	100	J		011		200	Ū	100			
//ajor/Minor	Major1		N	//ajor2		N	Minor1			Minor2		
Conflicting Flow All	552	0		- -	_	0	1032	_	458	1113	1019	547
Stage 1	-	-	_	_	_	-	472	_	-	547	547	-
Stage 2	_	_	_	_	_	_	560	_	_	566	472	_
Critical Hdwy	4.12		_	_	_	_	7.12	_	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	7.12	_	_	_	_	_	6.12	_	0.22	6.12	5.52	0.22
Critical Hdwy Stg 2	_		_	_	_	_	6.12	_	_	6.12	5.52	_
Follow-up Hdwy	2.218	_	_	_	_		3.518	_				
Pot Cap-1 Maneuver	1018	_	0	0	_		~ 211	0	603	186	237	537
Stage 1	1010	_	0	0	_	_	573	0	-	521	517	-
Stage 2		_	0	0	_	_	513	0	_	509	559	_
Platoon blocked, %	_		U	U	_	_	010	U	_	303	553	
Mov Cap-1 Maneuver	1018	-	_	_	_		~ 199	_	603	127	235	537
Mov Cap-1 Maneuver	1010	_	-	_	_		~ 199	_	-	127	235	551
Stage 1		-	_	_	-	_	568	_	-	516	517	_
Stage 2			_	_		_	488		_	347	554	_
Olago 2	-						700			J -1 1	554	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0			159			14.8		
HCM LOS	0.1			•			F			В		
10111 200							•					
Minor Lane/Major Mvmt	NBLn11	NBLn2	EBL	EBT	WBT	WBR S	SBLn1					
Capacity (veh/h)	199	603	1018	-	-	-	395					
HCM Lane V/C Ratio		0.312		_	_	-	0.074					
ICM Control Delay (s)	256.4	13.7	8.6	0	-	-	14.8					
ICM Lane LOS	F	В	A	A	_	_	В					
HCM 95th %tile Q(veh)	16.5	1.3	0	-	_	-	0.2					
,	70.0	1.0					7.2					
Notes	ф. D	alass as	d - 0/	20-	0	andelle	Nat D	ا ما ا	*. 41			المال المال
: Volume exceeds capacity	\$: De	elay exc	eeds 30	JUS	+: Com	putation	i Not De	erined	": All	major	volume	in plato

ntersection								
Int Delay, s/veh	80.8							
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
_ane Configurations	↑ ↑		ነ ነ	^	ሻ	7		
raffic Vol, veh/h	545	66	17	542	388	211		
uture Vol, veh/h	545	66	17	542	388	211		
onflicting Peds, #/hr		0	0	0	0	0		
ign Control	Free	Free	Free	Free	Stop	Stop		
RT Channelized	-	None	-	None	-	None		
Storage Length	_	-	80	-	0	0		
eh in Median Storage	e,# 0	_	-	0	0	_		
Grade, %	0	_	_	0	0	-		
eak Hour Factor	92	92	92	92	92	92		
eavy Vehicles, %	2	2	2	2	2	2		
vmt Flow	592	72	18	589	422	229		
ajor/Minor	Major1		Major2	ı	Minor1			
onflicting Flow All	0	0	664	0	959	332		
Stage 1	-	-	-	-	628	-		
Stage 2	-	_	_	_	331	_		
ritical Hdwy	_	_	4.14	_	6.84	6.94		
ritical Hdwy Stg 1	_	_		_	5.84	- 0.5		
ritical Hdwy Stg 2	_	_	_	_	5.84	_		
ollow-up Hdwy	_	<u>-</u>	2.22	_	3.52	3.32		
ot Cap-1 Maneuver	_	_	921		~ 255	664		
Stage 1	_	_	-	_	494	-		
Stage 2	_	_	_	_	700	_		
latoon blocked, %	-	_		-	. 00			
ov Cap-1 Maneuver		-	921	-	~ 250	664		
lov Cap-2 Maneuver		_			~ 250	-		
Stage 1	_	_	-	_	494	_		
Stage 2	-	_	-	-	686	-		
proach	EB		WB		NB			
CM Control Delay, s			0.3		238.3			
CM LOS	U		0.3		230.3 F			
JIVI LUU					Г			
inar Lana/Mais a Ma	mt !	NDL 4.1	UDL O	EDT	EDD	WDI	WDT	
linor Lane/Major Mvr	nt I	NBLn11		EBT	EBR	WBL	WBT	
apacity (veh/h)		250	664	-	-	921	-	
CM Cantrol Dalay (a	۸ ۴	1.687		-	-	0.02	-	
CM Control Delay (s	5) \$	360.6	13.3	-	-	9	-	
CM C5th % tilo O(vot	2)	F	B	-	-	A	-	
CM 95th %tile Q(veh	IJ	27.3	1.5	-	-	0.1	-	
otes								
Volume exceeds ca	apacity	\$: De	elay exc	ceeds 3	00s	+: Com	putation Not Defined	*: All major volume in platoon

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	33	19	1	0	23	30	1	9	3	46	14	36
Future Vol, veh/h	33	19	1	0	23	30	1	9	3	46	14	36
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	36	21	1	0	25	33	1	10	3	50	15	39
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB			SB		
Opposing Approach	WB				EB		SB			NB		
Opposing Lanes	1				1		1			1		
Conflicting Approach Left	SB				NB		EB			WB		
Conflicting Lanes Left	1				1		1			1		
Conflicting Approach Right	NB				SB		WB			EB		
Conflicting Lanes Right	1				1		1			1		
HCM Control Delay	7.7				7.2		7.2			7.6		
HCM LOS	Α				Α		Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	8%	62%	0%	48%	
Vol Thru, %	69%	36%	43%	15%	
Vol Right, %	23%	2%	57%	38%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	13	53	53	96	
LT Vol	1	33	0	46	
Through Vol	9	19	23	14	
RT Vol	3	1	30	36	
Lane Flow Rate	14	58	58	104	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.016	0.069	0.062	0.116	
Departure Headway (Hd)	4.091	4.299	3.845	4.014	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	864	827	921	886	
Service Time	2.168	2.36	1.912	2.073	
HCM Lane V/C Ratio	0.016	0.07	0.063	0.117	
HCM Control Delay	7.2	7.7	7.2	7.6	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0	0.2	0.2	0.4	

Intersection												
Int Delay, s/veh	2.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4î.			414	
Traffic Vol, veh/h	36	1	21	3	0	104	5	1011	5	13	275	18
Future Vol, veh/h	36	1	21	3	0	104	5	1011	5	13	275	18
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	39	1	23	3	0	113	5	1099	5	14	299	20
Major/Minor N	1inor2		<u> </u>	Minor1			Major1		N	/lajor2		
Conflicting Flow All	897	1451	160	1290	1459	552	319	0	0	1104	0	0
Stage 1	337	337	-	1112	1112	-	-	-	-	-	-	-
Stage 2	560	1114	-	178	347	-	-	-	-	-	-	-
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-
Pot Cap-1 Maneuver	235	130	857	121	128	477	1238	-	-	628	-	-
Stage 1	651	640	-	223	282	-	-	-	-	-	-	-
Stage 2	480	282	-	806	633	_	-	-		-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	174	125	857	114	123	477	1238	-	-	628	-	-
Mov Cap-2 Maneuver	174	125	-	114	123	-	-	-	-	-	-	-
Stage 1	644	623	-	221	279	-	-	-	-	-	-	-
Stage 2	363	279	-	762	616	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	25			16.2			0			0.6		
HCM LOS	D			С								
Minor Lane/Major Mvmt		NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1238	-	-	242	438	628	-				
HCM Lane V/C Ratio		0.004	-	-		0.266		-	-			
HCM Control Delay (s)		7.9	0	-	25	16.2	10.9	0.1	-			
HCM Lane LOS		A	A	-	D	С	В	Α	-			
HCM 95th %tile Q(veh)		0	-	-	1	1.1	0.1	-	-			

Intersection												
Int Delay, s/veh	2.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			414			4î.	
Traffic Vol, veh/h	5	4	25	31	5	40	8	627	33	10	920	15
Future Vol, veh/h	5	4	25	31	5	40	8	627	33	10	920	15
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	5	4	27	34	5	43	9	682	36	11	1000	16
Major/Minor N	Minor2			Minor1			Major1		N	Major2		
Conflicting Flow All	1392	1766	508	1242	1756	359	1016	0	0	718	0	0
Stage 1	1030	1030	-	718	718	-	-	-	-	-	-	-
Stage 2	362	736	_	524	1038	-	_	_	_	-	-	_
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	_	_
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	_	_	-	-	_
Critical Hdwy Stg 2	6.54	5.54	_	6.54	5.54	_	_	_	_	_	_	_
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	_	_	2.22	_	_
Pot Cap-1 Maneuver	101	83	510	131	84	638	678	_	_	879	_	_
Stage 1	250	309	-	386	431	-	-	_	<u>-</u>	-	_	_
Stage 2	629	423	_	504	306	_						
Platoon blocked, %	023	720		JU7	000			_	_		_	
Mov Cap-1 Maneuver	86	79	510	114	80	638	678	_	_	879	_	_
Mov Cap-1 Maneuver	86	79	-	114	80	-	-	_	<u>-</u>	-	_	_
Stage 1	245	300	_	378	422	_	_	_	_	_	_	_
Stage 2	566	414	_	457	297	_	_	_	_	_	_	_
Olago 2	000	717		701	201							
Approach	EB			WB			NB			SB		
HCM Control Delay, s	25.2			37.5			0.2			0.2		
HCM LOS	23.2 D			37.5 E			U.Z			0.2		
TOW LOO	U			<u> </u>								
Minor Lane/Major Mvm	nt	NBL	NBT	NRD	EBLn1V	WRI n1	SBL	SBT	SBR			
	IL	678					879		אמט			
Capacity (veh/h) HCM Lane V/C Ratio			-	-	215	191		-	-			
		0.013	- 0.1			0.433		- 0.1	-			
HCM Control Delay (s)		10.4	0.1	-	25.2	37.5	9.1	0.1	-			
HCM Lane LOS		В	Α	-	D	E	A	Α	-			
HCM 95th %tile Q(veh)		0	-	-	0.6	2	0	-	-			

Intersection												
Int Delay, s/veh	105.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ĵ.		Ť		7		4	
Traffic Vol, veh/h	4		0	0	529	8	388	0	375	0	0	7
uture Vol, veh/h	4	347	0	0	529	8	388	0	375	0	0	7
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	_	_	None	-	_	None	-	_	None
Storage Length	-		_	_	_	_	535	_	0	_	_	-
Veh in Median Storage	.# -	. 0	-	-	0	_	_	0	-	-	0	_
Grade, %	, -	. 0	_	_	0	_	_	0	_	_	0	_
Peak Hour Factor	92		92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2		2	2	2	2	2	2	2	2	2	2
Mymt Flow	4		0	0	575	9	422	0	408	0	0	8
WIVIIILI IOW	7	311	U	U	373	3	722	U	400	U	U	U
Major/Minor	Major1		ı	Major2		N	Minor1			Minor2		
Conflicting Flow All	584		-		-	0	969	-	377	1169	965	580
Stage 1	-	_	-	_	_	_	385	_	_	580	580	_
Stage 2	-		_	_	_	_	584	_	_	589	385	_
Critical Hdwy	4.12	_	-	-	-	_	7.12	-	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-		_	_	_	_	6.12	_	-	6.12	5.52	-
Critical Hdwy Stg 2	-		_	_	_	_	6.12	_	_	6.12	5.52	_
Follow-up Hdwy	2.218	_	_	_	_		3.518	_		3.518		3.318
Pot Cap-1 Maneuver	991		0	0	_		~ 233	0	670	170	255	514
Stage 1	-		0	0	_	_	638	0	-	500	500	J 1 -
Stage 2			0	0	-	_	498	0	-	494	611	
Platoon blocked, %		_	U	U	_	_	430	U	_	434	011	_
Mov Cap-1 Maneuver	991		_	_	-	-	~ 229	_	670	66	254	514
Mov Cap-1 Maneuver	991		_	-	-		~ 229	-	0/0	66	254	514
<u> </u>						-		-				
Stage 1	-	-	-	-	-	-	635	-	-	498	500	-
Stage 2		-	-	-	-	-	491	-	-	192	608	_
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0			228.3			12.1		
HCM LOS	U.1			- 0			F			В		
.5.11 200							'					
Minor Lane/Major Mvm	t NBLn1	NBLn2	EBL	EBT	WBT	WBR S	SBLn1					
Capacity (veh/h)	229	670	991	_	_	_	514					
HCM Lane V/C Ratio		0.608	0.004	-	-	-	0.015					
HCM Control Delay (s)			8.6	0	-	-	12.1					
ICM Lane LOS	Ψ 101.2		A	A	_	_	В					
ICM 95th %tile Q(veh)			0	-	_	-	0					
Notes	25.0											
iotes : Volume exceeds car	it. 6 F	elay exc		00-		and C	M-1 D	. C I	* ^!!			
	COUNTY U.	DION DV	Papar 3	II IC	+. (;0m	putation	Not D	hanite	^· ΔII	maior	volume	in plato

Intersection								
Int Delay, s/veh	27							
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
_ane Configurations	ħβ		ነ	^	7	7		
raffic Vol, veh/h	665	404	207	451	91	24		
uture Vol, veh/h	665	404	207	451	91	24		
onflicting Peds, #/hr	0	0	0	0	0	0		
gn Control	Free	Free	Free	Free	Stop	Stop		
T Channelized	-	None		None	-			
torage Length	-	-	80	-	0	0		
eh in Median Storage		-	-	0	0	-		
rade, %	0	-	-	0	0	-		
eak Hour Factor	92	92	92	92	92	92		
avy Vehicles, %	2	2	2	2	2	2		
mt Flow	723	439	225	490	99	26		
	/lajor1		Major2		/linor1			
nflicting Flow All	0	0	1162	0	1638	581		
Stage 1	-	-	-	-	943	-		
Stage 2	-	-	-	-	695	-		
tical Hdwy	-	-	4.14	-	6.84	6.94		
ical Hdwy Stg 1	-	-	-	-	5.84	-		
ical Hdwy Stg 2	-	-	-	-	5.84	-		
low-up Hdwy	-	-	2.22	-	3.52	3.32		
: Cap-1 Maneuver	-	-	597	-	~ 91	457		
Stage 1	-	-	-	-	339	-		
Stage 2	-	-	-	-	456	-		
toon blocked, %	-	-		-				
v Cap-1 Maneuver	-	-	597	-	~ 57	457		
ov Cap-2 Maneuver	-	-	-	-	~ 57	-		
Stage 1	-	-	-	-	339	-		
Stage 2	-	-	-	-	284	-		
proach	EB		WB		NB			
CM Control Delay, s	0		4.6	\$	406.8			
CM LOS					F			
non Long (N4-i N4		UDI 4 !	VIDL C	CDT	EDD	WDI	MDT	
nor Lane/Major Mvm	t f	VBLn11		EBT	EBR	WBL	WBT	
pacity (veh/h)		57	457	-	-	597	-	
M Lane V/C Ratio	•	1.735		-		0.377	-	
CM Control Delay (s)	\$	510.5	13.4	-	-	14.6	-	
CM Lane LOS		F	В	-	-	В	-	
CM 95th %tile Q(veh)		9.2	0.2	-	-	1.7	-	
otes								
olume exceeds cap	acity	\$: De	elay exc	eeds 30	00s	+: Com	putation Not Defined	*: All major volume in platoon

Intersection			
Intersection Delay, s/veh	7.9		
Intersection LOS	Α		
Intersection LOS	A		

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	47	21	0	4	17	23	5	8	2	102	5	29
Future Vol, veh/h	47	21	0	4	17	23	5	8	2	102	5	29
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	51	23	0	4	18	25	5	9	2	111	5	32
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8			7.3			7.4			8.1		
HCM LOS	Α			Α			Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	33%	69%	9%	75%	
Vol Thru, %	53%	31%	39%	4%	
Vol Right, %	13%	0%	52%	21%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	15	68	44	136	
LT Vol	5	47	4	102	
Through Vol	8	21	17	5	
RT Vol	2	0	23	29	
Lane Flow Rate	16	74	48	148	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.02	0.092	0.054	0.172	
Departure Headway (Hd)	4.352	4.496	4.092	4.18	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	826	802	880	849	
Service Time	2.358	2.496	2.096	2.257	
HCM Lane V/C Ratio	0.019	0.092	0.055	0.174	
HCM Control Delay	7.4	8	7.3	8.1	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.1	0.3	0.2	0.6	

Intersection												
Int Delay, s/veh	3.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			414			4TÞ	
Traffic Vol, veh/h	23	2	52	0	2	13	7	531	3	93	837	32
Future Vol, veh/h	23	2	52	0	2	13	7	531	3	93	837	32
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	25	2	57	0	2	14	8	577	3	101	910	35
Major/Minor N	Minor2		1	Minor1		ı	Major1		N	//ajor2		
Conflicting Flow All	1436	1726	473	1253	1742	290	945	0	0	580	0	0
Stage 1	1130	1130	-	595	595	-	-	-	-	-	-	-
Stage 2	306	596	-	658	1147	-	_	-	_	_	-	-
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-
Pot Cap-1 Maneuver	94	88	538	129	86	707	722	-	-	990	-	-
Stage 1	217	277	-	458	491	-	-	-	-	-	-	-
Stage 2	679	490	-	420	272	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	74	68	538	93	66	707	722	-	-	990	-	-
Mov Cap-2 Maneuver	74	68	-	93	66	-	-	-	-	-	-	-
Stage 1	214	217	-	451	483	-	-	-	-	-	-	-
Stage 2	652	482	-	292	213	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	42.7			17.3			0.2			1.6		
HCM LOS	Е			С								
Minor Lane/Major Mvm	t	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		722			176	308	990					
HCM Lane V/C Ratio		0.011	_	_		0.053		_	_			
HCM Control Delay (s)		10	0.1	_	42.7	17.3	9	0.8				
HCM Lane LOS		В	Α	_	τ <u>2.</u> 7	C	A	Α	_			
HCM 95th %tile Q(veh)		0		_	2.3	0.2	0.3	_				
TION JOHN JUNE Q(VOII)		- 0			2.0	0.2	0.0					

Int Delay, s/veh	Intersection												
Movement		3											
Lane Configurations		FBI	FRT	FBR	WRI	WRT	WBR	NBI	NRT	NBR	SBI	SBT	SBR
Traffic Vol, veh/h				LDIN	1102		71011	HUL		TOIL			ODIN
Future Vol, veh/h Conflicting Peds, #ihr O O O O O O O O O O O O O		2		57	19		25	3		31	31		24
Conflicting Peds, #hr Stop Stop Stop Stop Stop Stop Stop Stop Stop Free Free	· ·												
Sign Control Stop Free Free Free Free Free Free Free Tree													
RT Channelized													
Storage Length						•					-		
Veh in Median Storage, # - 0		-	-	-	-	-	-	-	-	-	-	-	-
Peak Hour Factor 92 92 92 92 92 92 92 9		,# -	0	-	-	0	-	-	0	-	-	0	-
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2	Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Mymt Flow 2 12 62 21 3 27 3 1147 34 34 580 26 Major/Minor Minor1 Minor1 Major1 Major2 Conflicting Flow All 1242 1848 303 1534 1844 591 606 0 0 1181 0 0 Stage 1 661 661 - 1170 1170 - <t< td=""><td>Peak Hour Factor</td><td>92</td><td>92</td><td>92</td><td>92</td><td>92</td><td>92</td><td>92</td><td>92</td><td>92</td><td>92</td><td>92</td><td>92</td></t<>	Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Major/Minor Minor2 Minor1 Major1 Major2	Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Conflicting Flow All 1242 1848 303 1534 1844 591 606 0 0 1181 0 0 Stage 1 661 661 - 1170 1170	Mvmt Flow	2	12	62	21	3	27	3	1147	34	34	580	26
Conflicting Flow All 1242 1848 303 1534 1844 591 606 0 0 1181 0 0 Stage 1 661 661 - 1170 1170													
Conflicting Flow All 1242 1848 303 1534 1844 591 606 0 0 1181 0 0 Stage 1 661 661 - 1170 1170	Major/Minor N	/linor2		ľ	Minor1			Major1		N	//ajor2		
Stage 1			1848			1844			0			0	0
Stage 2 581 1187 - 364 674	•									-	-		-
Critical Hdwy 7.54 6.54 6.94 7.54 6.54 6.94 4.14 - 4.14 - 4.14 - - 4.14 - - 4.14 - - 4.14 - - 4.14 -	•			-			-	-	-	-	-	-	-
Critical Hdwy Stg 1 6.54 5.54 - 6.54 5.54 -				6.94		6.54	6.94	4.14	-	-	4.14	-	-
Follow-up Hdwy 3.52 4.02 3.32 3.52 4.02 3.32 2.22 - 2.22 - 2.27 Pot Cap-1 Maneuver 131 74 693 79 74 450 968 - 587 - 587 Stage 1 418 458 - 205 265		6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Pot Cap-1 Maneuver	Critical Hdwy Stg 2							-	-	-	-	-	-
Stage 1									-	-		-	-
Stage 2 467 260 627 452 -	Pot Cap-1 Maneuver			693			450	968	-		587	-	-
Platoon blocked, %				-			-	-	-	-	-	-	-
Mov Cap-1 Maneuver 110 67 693 58 67 450 968 - - 587 - - Mov Cap-2 Maneuver 110 67 - 58 67 -		467	260	-	627	452	-	-	-	-	-	-	-
Mov Cap-2 Maneuver 110 67 - 58 67 -									-	-		-	-
Stage 1 414 418 - 203 263 -	•						450	968	-	-	587	-	-
Stage 2 429 258 - 506 412							-	-	-	-	-	-	-
Approach EB WB NB SB HCM Control Delay, s 24 63.4 0 1.1 HCM LOS C F Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR Capacity (veh/h) 968 - - 265 110 587 - - HCM Lane V/C Ratio 0.003 - - 0.287 0.464 0.057 - - HCM Control Delay (s) 8.7 0 - 24 63.4 11.5 0.5 - HCM Lane LOS A A - C F B A -							-	-	-	-	-	-	-
HCM Control Delay, s 24 63.4 0 1.1 HCM LOS C F Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR Capacity (veh/h) 968 - - 265 110 587 - - HCM Lane V/C Ratio 0.003 - - 0.287 0.464 0.057 - - HCM Control Delay (s) 8.7 0 - 24 63.4 11.5 0.5 - HCM Lane LOS A A - C F B A -	Stage 2	429	258	-	506	412	-	-	-	-	-	-	-
HCM Control Delay, s 24 63.4 0 1.1 HCM LOS C F Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR Capacity (veh/h) 968 - - 265 110 587 - - HCM Lane V/C Ratio 0.003 - - 0.287 0.464 0.057 - - HCM Control Delay (s) 8.7 0 - 24 63.4 11.5 0.5 - HCM Lane LOS A A - C F B A -													
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR Capacity (veh/h) 968 - - 265 110 587 - - HCM Lane V/C Ratio 0.003 - - 0.287 0.464 0.057 - - HCM Control Delay (s) 8.7 0 - 24 63.4 11.5 0.5 - HCM Lane LOS A A - C F B A -	Approach	EB			WB			NB			SB		
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR Capacity (veh/h) 968 - - 265 110 587 - - HCM Lane V/C Ratio 0.003 - - 0.287 0.464 0.057 - - HCM Control Delay (s) 8.7 0 - 24 63.4 11.5 0.5 - HCM Lane LOS A A - C F B A -	HCM Control Delay, s	24			63.4			0			1.1		
Capacity (veh/h) 968 265 110 587 HCM Lane V/C Ratio 0.003 0.287 0.464 0.057 HCM Control Delay (s) 8.7 0 - 24 63.4 11.5 0.5 - HCM Lane LOS A A - C F B A -	HCM LOS	С			F								
Capacity (veh/h) 968 265 110 587 HCM Lane V/C Ratio 0.003 0.287 0.464 0.057 HCM Control Delay (s) 8.7 0 - 24 63.4 11.5 0.5 - HCM Lane LOS A A - C F B A -													
Capacity (veh/h) 968 265 110 587 HCM Lane V/C Ratio 0.003 0.287 0.464 0.057 HCM Control Delay (s) 8.7 0 - 24 63.4 11.5 0.5 - HCM Lane LOS A A - C F B A -	Minor Lane/Major Mvm	t	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
HCM Lane V/C Ratio 0.003 - - 0.287 0.464 0.057 - - HCM Control Delay (s) 8.7 0 - 24 63.4 11.5 0.5 - HCM Lane LOS A A - C F B A -			968	-	_	265	110	587	-	-			
HCM Control Delay (s) 8.7 0 - 24 63.4 11.5 0.5 - HCM Lane LOS A A - C F B A -				-	-				-	-			
HCM Lane LOS A A - C F B A -				0	-				0.5	-			
HCM 95th %tile O(veh) 0 12 2 02	HCM Lane LOS		Α	Α	-	С	F	В	Α	-			
11.2 2 0.2	HCM 95th %tile Q(veh)		0	-	-	1.2	2	0.2	-	-			

.5											
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	ની			î,		7		7		4	
6	427	0	0	527	10	258	0	217	3	0	24
6	427	0	0	527	10	258	0	217	3	0	24
0	0	0	0	0	0	0	0	0	0	0	0
Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
-	-	None	-	-	None	-	-	None	-	-	None
-	-	-	-	-	-	535	-	0	-	-	-
-	0	-	-	0	-	-	0	-	-	0	-
-	0	-	-	0	-	-	0	-	-	0	-
92	92	92	92	92	92	92	92	92	92	92	92
2	2	2	2	2	2	2	2	2	2	2	2
7		0	0		11		0		3	0	26
Maior1		N	Maior2		N	/linor1			Minor2		
	0	_	-	_			_			1057	579
-	-	_	_	_	_		_	-			-
	_	_		_	_		_				_
		_		_	_		_				6.22
		_			_		_				0.22
							_				3 318
							0				515
					_						-
					_						
_		U	U		_	433	U	_	430	330	_
001					_	~ 197		508	101	223	515
							_				515
					<u>-</u>		_				_
	-	-		-	-		-				-
-	-	-	-	-	-	400	-	-	294	330	_
FR			WR			NR			SB		
0.1			U								
						Г			U		
NRI n1 I	VRI n2	FRI	FRT	WRT	WRR	SBI n1					
			LD1	***	ייופייי						
			-	-	-						
0.11	1.9	U		-	-	0.3					
	EBL 6 6 7 7 Free 92 2 7 Major1 584 2.218 991 991 BB 0.1 NBLn1I	EBL EBT 6 427 6 427 0 0 Free Free 0 - 0 92 92 2 2 7 464 Major1 584 0 4.12 2.218 - 991 991 991 1 NBLn1 NBLn2 NBLn1 NBLn2 187 598 1.5 0.394 296.8 14.9 F B	EBL EBT EBR 6 427 0 6 427 0 0 0 0 0 Free Free Free - None None - 0 - 92 92 92 2 2 2 2 7 464 0 Major1 N 584 0 1 2 1 2.218 2.218 - 991 - 0 - 991 - 0 - 991 - 0 - 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	EBL EBR WBL 6 427 0 0 6 427 0 0 0 0 0 0 Free Free Free Free - - None - - 0 - - 92 92 92 92 92 92 92 92 2 2 2 2 2 7 464 0 0 0 84 0 - - - - - - - - 4.12 - - - - 2.218 - - - - 991 - 0 0 0 - 991 - 0 0 - - - - - - - - - - - - - - - - - - - - - -	EBL EBR WBL WBT 6 427 0 0 527 6 427 0 0 527 0 0 0 0 0 Free Free Free Free Free - None - - - 0 - - - 0 - - 92 92 92 92 92 92 92 92 2 2 2 2 2 7 464 0 0 573 Major1 Image: Contract of the con	EBL EBR WBL WBT WBR 6 427 0 0 527 10 6 427 0 0 527 10 0 0 0 0 0 0 Free Free Free Free Free Free - None - None - None - - None - None - None - - None - - None - - None - - - - - - - - - - - - - - -	EBL EBR WBL WBT WBL 6 427 0 0 527 10 258 6 427 0 0 527 10 258 6 427 0 0 527 10 258 0 0 0 0 0 0 0 Free Free Free Free Free Free Stop - 7 None - None - 535 - 0 - 0 - 535 - 0 - 0 0 - - 92	EBL EBR WBL WBT WBR NBL NBT 6 427 0 0 527 10 258 0 6 427 0 0 527 10 258 0 6 427 0 0 527 10 258 0 6 427 0 0 527 10 258 0 6 427 0 0 0 0 0 0 0 Free Free Free Free Free Free Free Stop - 7 0 - - 0 0 - 0 0 92	EBL EBR WBL WBT WBR NBL NBT NBR 6 427 0 0 527 10 258 0 217 6 427 0 0 527 10 258 0 217 0	Fig. Fig.	Fig. Fig.

Intersection								
Int Delay, s/veh	113.3							
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	ħβ		*	^	ሻ	7		
Traffic Vol, veh/h	649	66	17	612	388	211		
Future Vol, veh/h	649	66	17	612	388	211		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Free	Free	Free	Free	Stop	Stop		
RT Channelized	_		_	None	-			
Storage Length	_	-	80	-	0	0		
Veh in Median Storage	e.# 0	_	-	0	0	-		
Grade, %	0	_	_	0	0	_		
Peak Hour Factor	92	92	92	92	92	92		
Heavy Vehicles, %	2	2	2	2	2	2		
Mvmt Flow	705	72	18	665	422	229		
WIVIII I IOW	703	12	10	003	422	223		
Major/Minor	Major1		Major2	P	Minor1			
Conflicting Flow All	0	0	777		1110	389		
Stage 1	-	-	-	-	741	309		
•		-			369	-		
Stage 2	-	-	-	-		6.04		
Critical Hdwy	-	-	4.14	-	6.84	6.94		
Critical Hdwy Stg 1	-	_	-	-	5.84	-		
Critical Hdwy Stg 2	-	-	-	-	5.84	-		
Follow-up Hdwy	-	-	2.22	-	3.52	3.32		
Pot Cap-1 Maneuver	-	-	835	-	~ 203	610		
Stage 1	-	-	-	-	432	-		
Stage 2	-	-	-	-	670	-		
Platoon blocked, %	-	-		-				
Mov Cap-1 Maneuver	-	-	835		~ 199	610		
Mov Cap-2 Maneuver	-	-	-	-	~ 199	-		
Stage 1	-	-	-	-	432	-		
Stage 2	-	-	-	-	655	-		
Approach	EB		WB		NB			
HCM Control Delay, s	0		0.3	\$	367.2			
HCM LOS					F			
Minor Lane/Major Mvn	nt I	NBLn11	NBI n2	EBT	EBR	WBL	WBT	
Capacity (veh/h)		199	610	-	LDIN	835	-	
HCM Lane V/C Ratio		2.119			-	0.022		
	\			-			-	
HCM Control Delay (s)		\$ 559	14.4	-	-	9.4	-	
HCM Lane LOS	.\	F	B	-	-	Α	-	
HCM 95th %tile Q(veh)	32.7	1.7	-	-	0.1	-	
Notes								
-: Volume exceeds ca	pacity	\$: De	elay exc	eeds 30	00s	+: Com	putation Not Defined	*: All major volume in platoon

Intersection												
Intersection Delay, s/veh	7.7											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	33	25	1	0	27	34	1	9	3	70	14	36
Future Vol, veh/h	33	25	1	0	27	34	1	9	3	70	14	36
Peak Hour Factor	0.00	0.00	0.00						2 22	0.00	2 22	0.00
i can i loui i actoi	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92

Approach	EB	WB	NB	SB	
Opposing Approach	WB	EB	SB	NB	_
Opposing Lanes	1	1	1	1	
Conflicting Approach Left	SB	NB	EB	WB	
Conflicting Lanes Left	1	1	1	1	
Conflicting Approach Right	NB	SB	WB	EB	
Conflicting Lanes Right	1	1	1	1	
HCM Control Delay	7.8	7.3	7.3	7.9	
HCM LOS	Α	А	Α	Α	

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	8%	56%	0%	58%	
Vol Thru, %	69%	42%	44%	12%	
Vol Right, %	23%	2%	56%	30%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	13	59	61	120	
LT Vol	1	33	0	70	
Through Vol	9	25	27	14	
RT Vol	3	1	34	36	
Lane Flow Rate	14	64	66	130	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.016	0.077	0.072	0.149	
Departure Headway (Hd)	4.138	4.34	3.901	4.107	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	851	815	903	865	
Service Time	2.233	2.423	1.99	2.173	
HCM Lane V/C Ratio	0.016	0.079	0.073	0.15	
HCM Control Delay	7.3	7.8	7.3	7.9	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0	0.2	0.2	0.5	

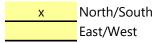
Intersection												
Int Delay, s/veh	3.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	LOIL	1,02	4	11.511	,,,,,,	413	1,51	UDL	413	UDIT
Traffic Vol, veh/h	45	1	27	3	0	104	5	1112	5	13	435	17
Future Vol, veh/h	45	1	27	3	0	104	5	1112	5	13	435	17
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	_	_	None	_	-	None
Storage Length	_	_	-	-	-	-	-	-	-	-	_	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	_
Grade, %	_	0	-	-	0	-	-	0	_	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	49	1	29	3	0	113	5	1209	5	14	473	18
Major/Minor N	/linor2			Minor1			Major1		N	//ajor2		
Conflicting Flow All	1125	1734	246	1487	1741	607	491	0	0	1214	0	0
Stage 1	510	510	-	1222	1222	-	-	-	-	-	-	-
Stage 2	615	1224	-	265	519	-	-	-	-	-	-	-
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-
Pot Cap-1 Maneuver	160	87	754	86	86	439	1069	-	-	570	-	-
Stage 1	514	536	-	190	250	-	-	-	-	-	-	-
Stage 2	445	250	-	717	531	-	-	-		-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	115	83	754	79	82	439	1069	-	-	570	-	-
Mov Cap-2 Maneuver	115	83	-	79	82	-	-	-	-	-	-	-
Stage 1	507	518	-	187	247	-	-	-	-	-	-	-
Stage 2	326	247	-	664	513	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	45.1			18.2			0.1			0.5		
HCM LOS	Е			С								
Minor Lane/Major Mvm	t	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1069	-	-		389	570	-	_			
HCM Lane V/C Ratio		0.005	_			0.299		_	_			
HCM Control Delay (s)		8.4	0.1	_	45.1	18.2	11.5	0.2	-			
HCM Lane LOS		A	A	-	E	C	В	A	_			
HCM 95th %tile Q(veh)		0	-	_	2.3	1.2	0.1	-	-			

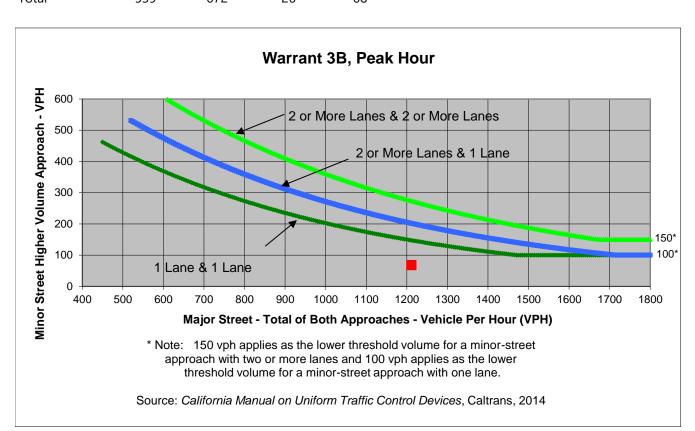
APPENDIX E: SIGNAL WARRANT ANALYSIS

Major Street Minor Street Buena Vista Street

3 Ranch Road

Project Scenario Peak Hour


AM


Duarte Station Specific Plan
Existing

Turn Movement Volumes

	NB	SB	EB	WB
Left	8	10	5	27
Through	500	647	3	2
Right	31	15	18	39
Total	539	672	26	68

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Buena Vista Street	3 Ranch Road	vvariant wet
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) *	1,211	68	<u>NO</u>

Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street Buena Vista Street 3 Ranch Road

Project Scenario

Duarte Station Specific Plan Existing Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	8	10	5	27
Through	500	647	3	2
Right	31	15	18	39
Total	539	672	26	68

Major Street Direction

X	North/South	
	East/West	

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

1

Worst Case Delay for Minor Street

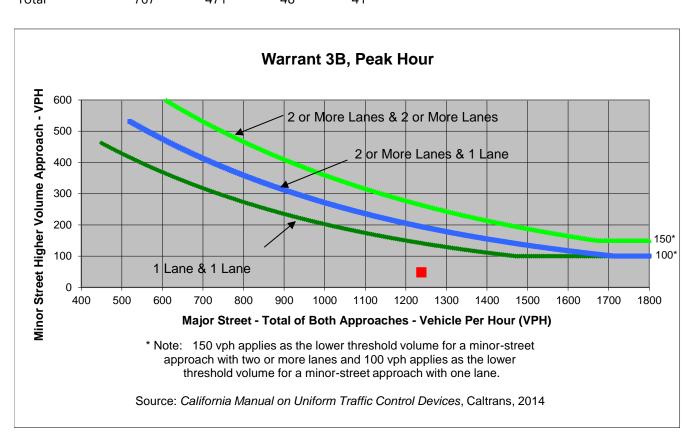
18.9
EB
26

Warrant 3A, Peak Hour			
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
Existing	0.1	68	1,305
Limiting Value	4	100	800
Condition Satisfied?	Not Met	Not Met	Met
Warrant Met		<u>NO</u>	

Major Street Minor Street Buena Vista Street
3 Ranch Road

Project Scenario Peak Hour


PM


Duarte Station Specific Plan
Existing

Turn Movement Volumes

	NB	SB	EB	WB
Left	3	30	2	16
Through	737	418	8	1
Right	27	23	38	24
Total	767	<i>4</i> 71	48	<i>I</i> 1

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Buena Vista Street	3 Ranch Road	vvarrant iviet
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) *	1,238	48	<u>NO</u>

* Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street Buena Vista Street 3 Ranch Road

Project Scenario

Duarte Station Specific Plan Existing Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	3	30	2	16
Through	737	418	8	1
Right	27	23	38	24
Total	767	<i>1</i> 71	18	<u>//1</u>

Major Street Direction

Х	North/South	
	East/West	

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

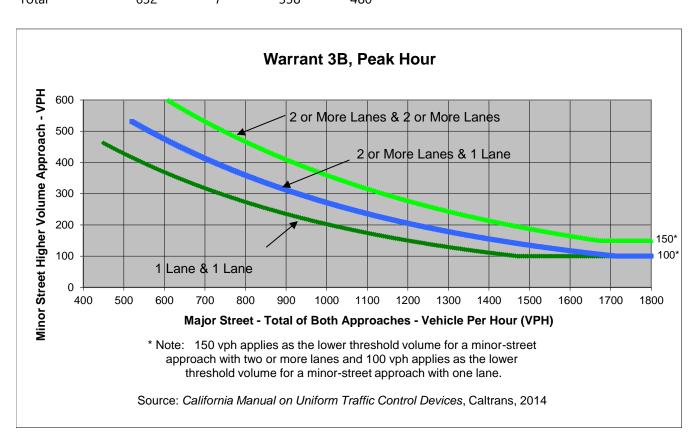
1	
4	

Worst Case Delay for Minor Street

22.5
EB
48

	Warrant 3A, Peak	Hour	
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
Existing	0.3	48	1,327
Limiting Value	4	100	800
Condition Satisfied?	Not Met	Not Met	Met
Warrant Met		<u>NO</u>	

Major Street Minor Street Central Ave I-210 WB Off-ramp Project Scenario Duarte Station Specific Plan
Existing


Peak Hour AM

Major Street Direction

	North/South
Χ	East/West

Turn Movement Volumes

	NB	SB	EB	WB
Left	298	0	4	0
Through	0	0	334	472
Right	334	7	0	8
Total	632	7	338	480

	Major Street	Minor Street	Warrant Met	
	Central Ave	I-210 WB Off-ramp	vvarrant iviet	
Number of Approach Lanes	2	2	VEC	
Traffic Volume (VPH) *	818	632	YES	

* Note: Traffic Volume for Major Street is Total Volume of Both Approachs.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street Central Ave I-210 WB Off-ramp Project Scenario

Duarte Station Specific Plan Existing Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	298	0	4	0
Through	0	0	334	472
Right	334	7	0	8
Total	632	7	338	480

Major Street Direction

North/South East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

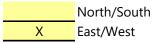
2 4

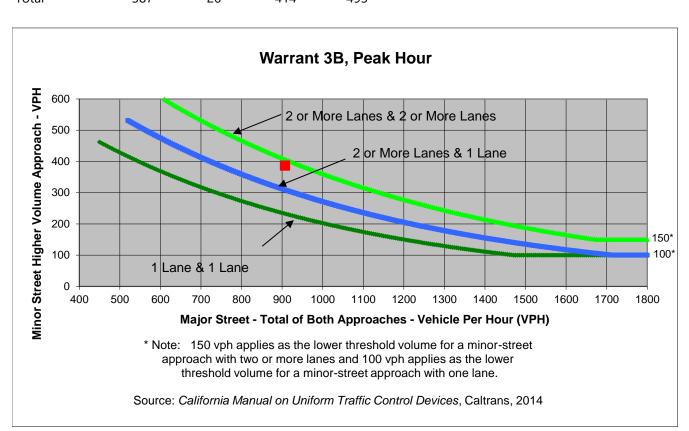
Worst Case Delay for Minor Street

94.4	
EB	
338	

Warrant 3A, Peak Hour					
Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume on Minor Approach (vph) Peak Hour Entering Volume Serviced (vph)					
Existing	8.9	632	1,457		
Limiting Value	5	150	800		
Condition Satisfied?	Met	Met	Met		
Warrant Met	YES				

Major Street Minor Street Central Ave I-210 WB Off-ramp Project Scenario Duarte Station Specific Plan
Existing


Peak Hour


PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	222	3	6	0
Through	0	0	408	483
Right	165	23	0	10
Total	387	26	414	493

Major Street Direction

	Major Street	Minor Street	Warrant Met	
	Central Ave	I-210 WB Off-ramp	warrant wet	
Number of Approach Lanes	2	2	NO	
Traffic Volume (VPH) *	907	387	<u>NO</u>	

Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street Central Ave I-210 WB Off-ramp Project Scenario

Duarte Station Specific Plan Existing Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	222	3	6	0
Through	0	0	408	483
Right	165	23	0	10
Total	387	26	414	493

Major Street Direction

North/South East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

2 4

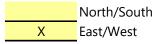
Worst Case Delay for Minor Street

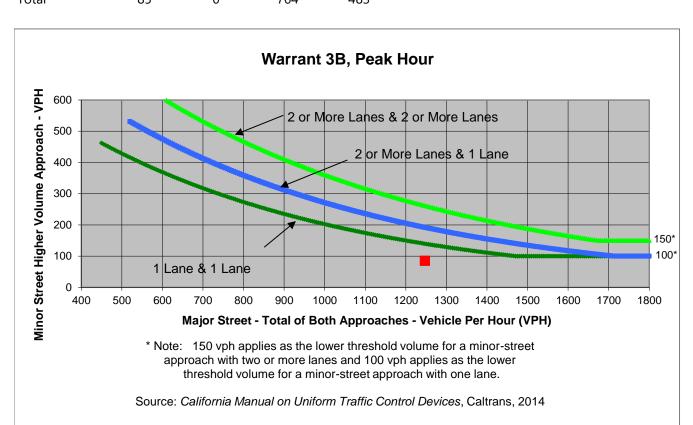
94.9
EB
414

Warrant 3A, Peak Hour					
Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume on Minor Approach (vph) Peak Hour Entering volume Serviced (vph)					
Existing	10.9	387	1,320		
Limiting Value	5	150	800		
Condition Satisfied?	Met	Met	Met		
Warrant Met	YES				

Major Street Minor Street Duarte Road
Village Road

Project Scenario Duarte Station Specific Plan
Existing


Peak Hour AM


xisting .M

Turn Movement Volumes

	NB	SB	EB	WB
Left	66	0	0	166
Through	0	0	502	317
Right	19	0	262	0
Total	85	n	764	483

Major Street Direction

	Major Street	Minor Street	Warrant Met	
	Duarte Road	Village Road	vvarrant iviet	
Number of Approach Lanes	2	1	NO	
Traffic Volume (VPH) *	1,247	85	NO NO	

* Note: Traffic Volume for Major Street is Total Volume of Both Approachs.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street **Duarte Road** Village Road Project Scenario

Duarte Station Specific Plan Existing Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	66	0	0	166
Through	0	0	502	317
Right	19	0	262	0
Total	85	0	764	483

Major Street Direction

North/South East/West

Intersection Geometry

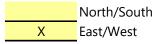
Number of Approach Lanes for Minor Street **Total Approaches**

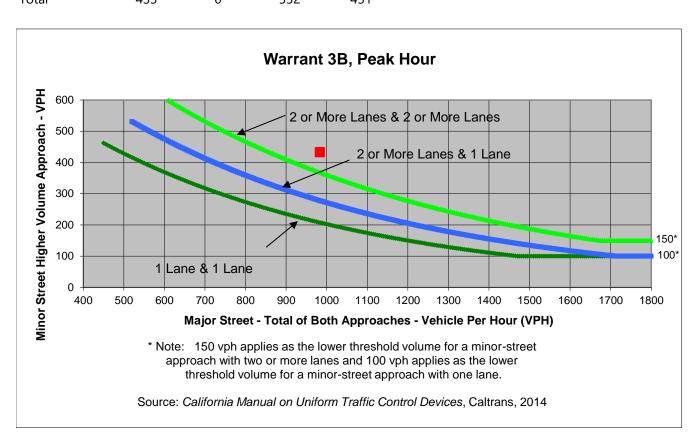
1 3

Worst Case Delay for Minor Street

49.1
EB
764

Warrant 3A, Peak Hour			
Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Delay on Peak Hour Volume Peak Hour Enterion on Minor Approach (vph) (vph)			
Existing	10.4	85	1,332
Limiting Value	4	100	650
Condition Satisfied?	Met	Not Met	Met
Warrant Met	NO		


Major Street Minor Street **Duarte Road** Village Road Project Scenario **Duarte Station Specific Plan** Existing


Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	252	0	0	11
Through	0	0	509	420
Right	181	0	43	0
Total	433	0	552	4 31

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Duarte Road	Village Road	warrant wet
Number of Approach Lanes	2	1	VEC
Traffic Volume (VPH) *	983	433	<u>YES</u>

Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street **Duarte Road** Village Road Project Scenario

Duarte Station Specific Plan Existing Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	252	0	0	11
Through	0	0	509	420
Right	181	0	43	0
Total	4 33	0	552	4 31

Major Street Direction

North/South East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

1 3

Worst Case Delay for Minor Street

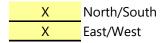
44.3
EB
552

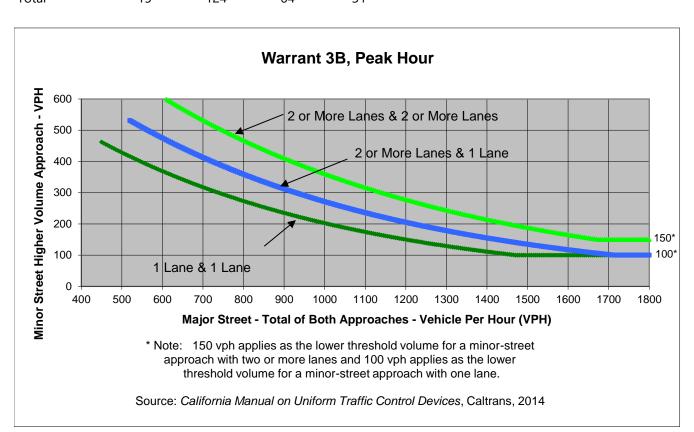
Warrant 3A, Peak Hour			
			Peak Hour Entering Volume Serviced (vph)
Existing	6.8	433	1,416
Limiting Value	4	100	650
Condition Satisfied?	Met	Met	Met
Warrant Met	YES		

Major Street Minor Street

Turn Movement Volumes

Duncannan Avenue
Evergreen Street


Project Scenario Peak Hour


AM

Duarte Station Specific Plan
Existing

	NB	SB	EB	WB
Left	5	91	46	4
Through	8	5	18	11
Right	2	28	0	16
Total	15	124	64	31

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Duncannan Avenue	Evergreen Street	vvairant iviet
Number of Approach Lanes	1	1	NO
Traffic Volume (VPH) *	95	124	<u>NO</u>

* Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street Duncannan Avenue

Evergreen Street

Project Dua Scenario Exist Peak Hour AM

Duarte Station Specific Plan
Existing
AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	5	91	46	4
Through	8	5	18	11
Right	2	28	0	16
Total	15	124	64	31

Major Street Direction

Χ	North/South
Χ	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street Total Approaches 1 4

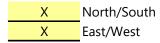
Worst Case Delay for Minor Street

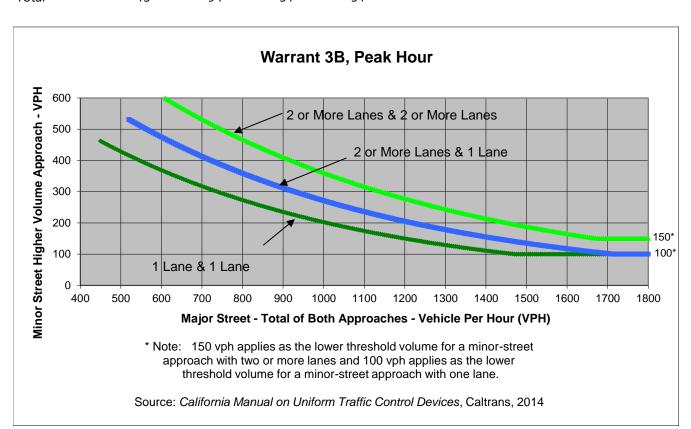
7.8
EB
64

Warrant 3A, Peak Hour					
	Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume On Minor Approach (vph) Peak Hour Enter On Minor Approach (vph)				
Existing	0.1	64	234		
Limiting Value	4	100	800		
Condition Satisfied?	Not Met	Not Met	Not Met		
Warrant Met		<u>NO</u>			

Major Street Minor Street Duncannan Avenue
Evergreen Street

Project Scenario Peak Hour


PM


Duarte Station Specific Plan
Existing

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	45	32	0
Through	9	14	18	22
Right	3	35	1	29
Total	13	94	51	51

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Duncannan Avenue	Evergreen Street	vvairant iviet
Number of Approach Lanes	1	1	NO
Traffic Volume (VPH) *	102	94	<u>NO</u>

* Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street Duncannan Avenue **Evergreen Street**

Project Scenario

Duarte Station Specific Plan Existing Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	45	32	0
Through	9	14	18	22
Right	3	35	1	29
Total	13	94	51	51

Major Street Direction

X	North/South
X	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

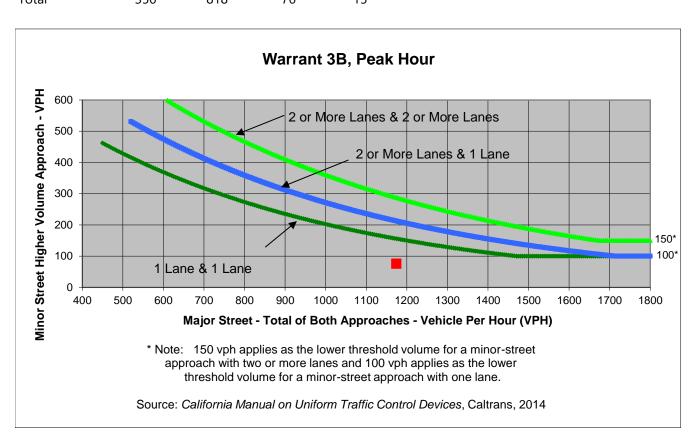
Worst Case Delay for Minor Street

7.5
EB
51

Warrant 3A, Peak Hour					
	Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume Peak Hour Enterior On Minor Approach (vph) (vph)				
Existing	0.1	51	209		
Limiting Value	4	100	800		
Condition Satisfied?	Not Met Not Met Not Met				
Warrant Met		<u>NO</u>			

Major Street Minor Street Highland Avenue
Evergreen Street

Project Scenario Duarte Station Specific Plan
Existing


Peak Hour AM

Major Street Direction

Χ	North/South
	East/West

Turn Movement Volumes

	NB	SB	EB	WB
Left	5	90	23	0
Through	348	700	2	2
Right	3	28	51	13
Total	356	818	76	15

	Major Street	Minor Street	Warrant Met
	Highland Avenue	Evergreen Street	vvarrant iviet
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) *	1,174	76	<u>NO</u>

* Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street Highland Avenue **Evergreen Street**

Project Scenario

Duarte Station Specific Plan Existing Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	5	90	23	0
Through	348	700	2	2
Right	3	28	51	13
Total	356	818	76	15

Major Street Direction

Χ	North/South	
	East/West	

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

1

Worst Case Delay for Minor Street

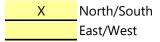
24.3
EB
76

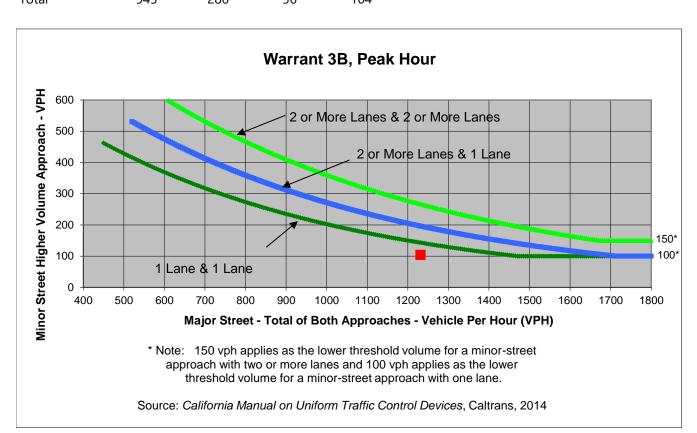
Warrant 3A, Peak Hour					
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)		
Existing	0.5	76	1,265		
Limiting Value	4	100	800		
Condition Satisfied?	Not Met	Not Met	Met		
Warrant Met		<u>NO</u>			

Major Street Minor Street Highland Avenue

Evergreen Street

Project Scenario Peak Hour Duarte Station Specific Plan


Existing


PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	5	13	35	3
Through	935	256	1	0
Right	5	17	20	101
Total	945	286	56	104

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Highland Avenue	Evergreen Street	vvarrant iviet
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) *	1,231	104	<u>NO</u>

* Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street Highland Avenue

Evergreen Street

Project Dua Scenario Exis Peak Hour PM

Duarte Station Specific Plan
Existing

Turn Movement Volumes

	NB	SB	EB	WB
Left	5	13	35	3
Through	935	256	1	0
Right	5	17	20	101
Total	945	286	56	104

Major Street Direction

X	North/South	
	East/West	

Intersection Geometry

Number of Approach Lanes for Minor Street Total Approaches 1 4

Worst Case Delay for Minor Street

22.0	
EB	
56	

Warrant 3A, Peak Hour				
Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume Peak Hour En Volume Ser (vph) Peak Hour Delay on Minor Approach (vph)				
Existing	0.3	104	1,391	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Met	Met	
Warrant Met		<u>NO</u>		

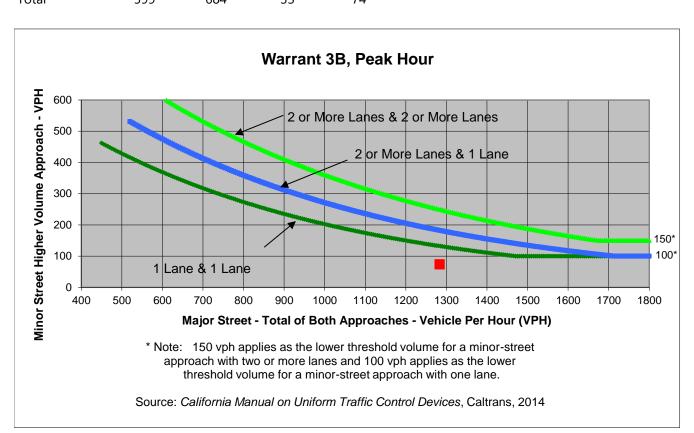
Major Street Minor Street Buena Vista Street

3 Ranch Road

Project Scenario Peak Hour

Duarte Station Specific Plan


Existing plus Project


AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	8	10	5	30
Through	559	659	4	5
Right	32	15	24	39
Total	599	684	33	74

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Buena Vista Street	3 Ranch Road	vvarrant iviet
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) *	1,283	74	<u>NO</u>

Major Street Minor Street Buena Vista Street 3 Ranch Road

Project Scenario

Duarte Station Specific Plan Existing plus Project Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	8	10	5	30
Through	559	659	4	5
Right	32	15	24	39
Total	599	684	33	74

Major Street Direction

Х	North/South
	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

1	
4	

Worst Case Delay for Minor Street

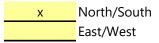
23.4
EB
33

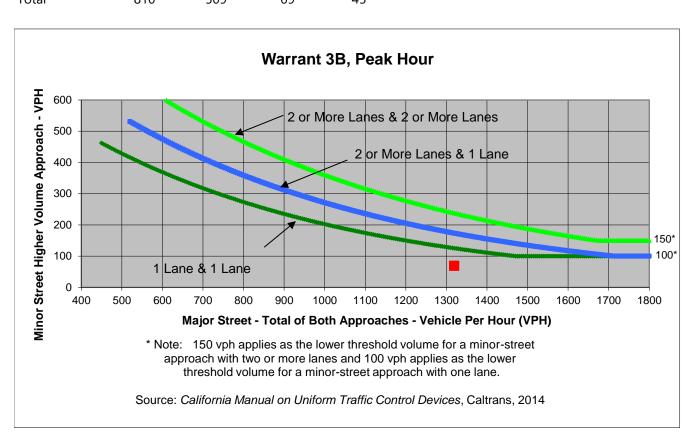
Warrant 3A, Peak Hour				
Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume On Minor Approach (vph) Peak Hour Enter On Minor Approach (vph)				
Existing plus Project	0.2	74	1,390	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met		<u>NO</u>		

Major Street Minor Street Buena Vista Street
3 Ranch Road

Project Scenario Peak Hour

Duarte Station Specific Plan


Existing plus Project


PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	3	30	2	18
Through	777	456	11	3
Right	30	23	56	24
Total	810	509	69	45

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Buena Vista Street	3 Ranch Road	warrant wet
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) *	1,319	69	NO NO

Major Street Minor Street Buena Vista Street 3 Ranch Road

Project Scenario

Duarte Station Specific Plan Existing plus Project Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	3	30	2	18
Through	777	456	11	3
Right	30	23	56	24
Total	810	509	69	15

Najor Street Direction	
------------------------	--

Χ	North/South
	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

1	
4	

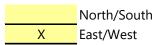
Worst Case Delay for Minor Street

28.4	
EB	
69	

Warrant 3A, Peak Hour			
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
Existing plus Project	0.5	69	1,433
Limiting Value	4	100	800
Condition Satisfied?	Not Met	Not Met	Met
Warrant Met		NO	

Major Street Minor Street Central Ave I-210 WB Off-ramp Project Scenario Peak Hour

Duarte Station Specific Plan


Existing plus Project


AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	298	0	4	0
Through	0	0	336	514
Right	348	7	0	8
Total	646	7	340	522

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Central Ave	I-210 WB Off-ramp	vvarrant iviet
Number of Approach Lanes	2	2	VEC
Traffic Volume (VPH) *	862	646	<u>YES</u>

Major Street Minor Street Central Ave I-210 WB Off-ramp Project Dua Scenario Exist Peak Hour AM

Duarte Station Specific Plan

Existing plus Project

AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	298	0	4	0
Through	0	0	336	514
Right	348	7	0	8
Total	646	7	340	522

Major Street Direction

	North/South
Χ	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street Total Approaches 2

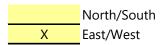
Worst Case Delay for Minor Street

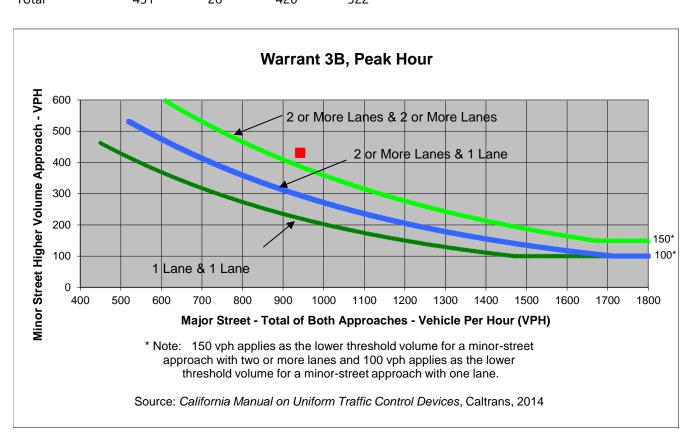
112.7
EB
340

Warrant 3A, Peak Hour					
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)		
Existing plus Project	10.6	646	1,515		
Limiting Value	5	150	800		
Condition Satisfied?	Met	Met	Met		
Warrant Met		YES			

Major Street Minor Street Central Ave I-210 WB Off-ramp Project Scenario Peak Hour

Duarte Station Specific Plan


Existing plus Project


PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	222	3	6	0
Through	0	0	414	512
Right	209	23	0	10
Total	<i>4</i> 31	26	420	522

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Central Ave	I-210 WB Off-ramp	vvariant iviet
Number of Approach Lanes	2	2	VEC
Traffic Volume (VPH) *	942	431	YES

Major Street Minor Street Central Ave I-210 WB Off-ramp Project Scenario

Duarte Station Specific Plan Existing plus Project Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	222	3	6	0
Through	0	0	414	512
Right	209	23	0	10
Total	431	26	420	522

Major Street Direction

North/South East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

2 4

Worst Case Delay for Minor Street

Stopped Delay (seconds per vehicle) Approach with Worst Case Delay Total Vehicles on Approach

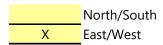
101.6 EB 420

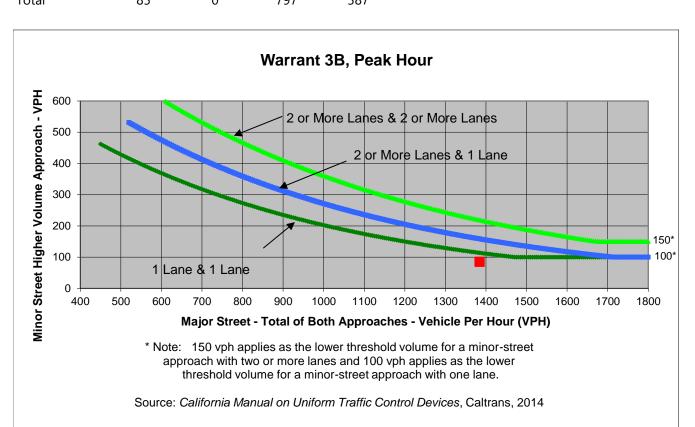
	Warrant 3A, Peak Hour					
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)			
Existing plus Project	11.9	431	1,399			
Limiting Value	5	150	800			
Condition Satisfied?	Met	Met	Met			
Warrant Met		YES				

Major Street Minor Street Duarte Road
Village Road

Project Scenario Peak Hour

Duarte Station Specific Plan


Existing plus Project


AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	66	0	0	166
Through	0	0	535	421
Right	19	0	262	0
Total	85	Λ	797	587

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Duarte Road	Village Road	warrant wet
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) *	1,384	85	<u>NO</u>

Major Street Minor Street **Duarte Road** Village Road Project Scenario

Duarte Station Specific Plan Existing plus Project Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	66	0	0	166
Through	0	0	535	421
Right	19	0	262	0
Total	85	0	797	587

Major Street Direction

North/South East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

1 3

Worst Case Delay for Minor Street

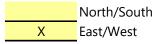
63.2
EB
797

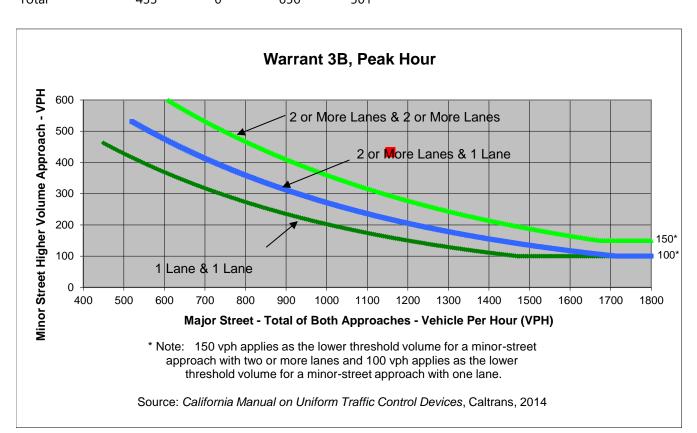
	Warrant 3A, Peak Hour					
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)			
Existing plus Project	14	85	1,469			
Limiting Value	4	100	650			
Condition Satisfied?	Met	Not Met	Met			
Warrant Met		<u>NO</u>				

Major Street Minor Street Duarte Road
Village Road

Project Scenario Peak Hour

Duarte Station Specific Plan


Existing plus Project


PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	252	0	0	11
Through	0	0	613	490
Right	181	0	43	0
Total	433	0	656	501

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Duarte Road	Village Road	vvariant iviet
Number of Approach Lanes	2	1	VEC
Traffic Volume (VPH) *	1,157	433	YES

Major Street Minor Street **Duarte Road** Village Road Project Scenario

Duarte Station Specific Plan Existing plus Project Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	252	0	0	11
Through	0	0	613	490
Right	181	0	43	0
Total	433	0	656	501

Major Street Direction

North/South East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

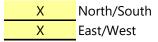
1 3

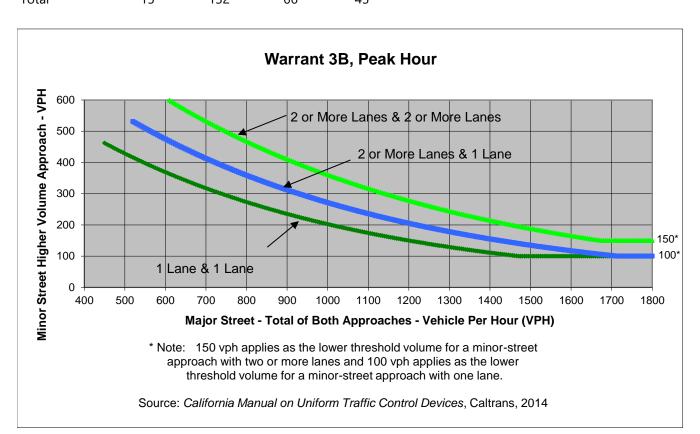
Worst Case Delay for Minor Street

85.8	
EB	
656	

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume Peak Hour Entering Volume Serviced (vph)			
Existing plus Project	15.6	433	1,590	
Limiting Value	4	100	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met		YES		

Major Street Minor Street **Duncannan Avenue Evergreen Street**


Project Scenario


Duarte Station Specific Plan Existing plus Project Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	5	99	46	4
Through	8	5	20	17
Right	2	28	0	22
Total	15	132	66	/13

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Duncannan Avenue	Evergreen Street	vvariant iviet
Number of Approach Lanes	1	1	NO
Traffic Volume (VPH) *	109	132	NO NO

Major Street Minor Street Duncannan Avenue **Evergreen Street**

Project Scenario

Duarte Station Specific Plan Existing plus Project Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	5	99	46	4
Through	8	5	20	17
Right	2	28	0	22
Total	15	132	66	43

Major Street Direction

X	North/South
X	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

1	
4	

Worst Case Delay for Minor Street

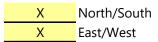
7.9	
EB	
66	

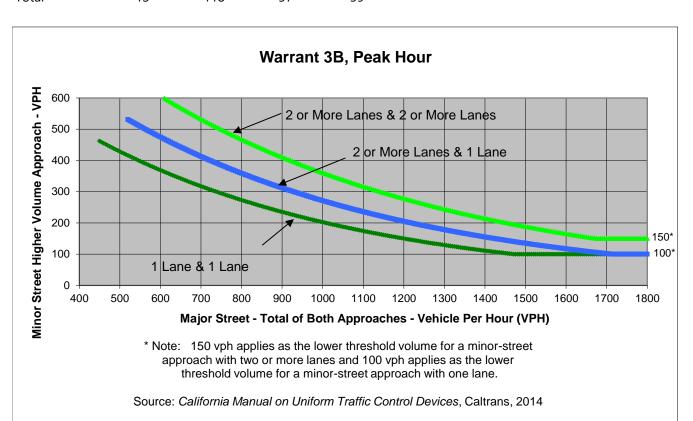
Warrant 3A, Peak Hour				
Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume On Minor Approach (vph) Peak Hour Entering On Minor Approach (vph)				
Existing plus Project	0.1	66	256	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Not Met	Not Met	
Warrant Met		<u>NO</u>		

Major Street Minor Street Duncannan Avenue
Evergreen Street

Project Scenario Peak Hour

Duarte Station Specific Plan


Existing plus Project


PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	69	32	0
Through	9	14	24	26
Right	3	35	1	33
Total	13	118	57	59

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Duncannan Avenue	Evergreen Street	vvariant iviet
Number of Approach Lanes	1	1	NO
Traffic Volume (VPH) *	116	118	NO NO

Major Street Minor Street Duncannan Avenue **Evergreen Street**

Project Scenario

Duarte Station Specific Plan Existing plus Project Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	69	32	0
Through	9	14	24	26
Right	3	35	1	33
Total	13	118	57	59

Major Street Direction

X	North/South
X	East/West

Intersection Geometry

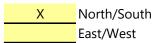
Number of Approach Lanes for Minor Street **Total Approaches**

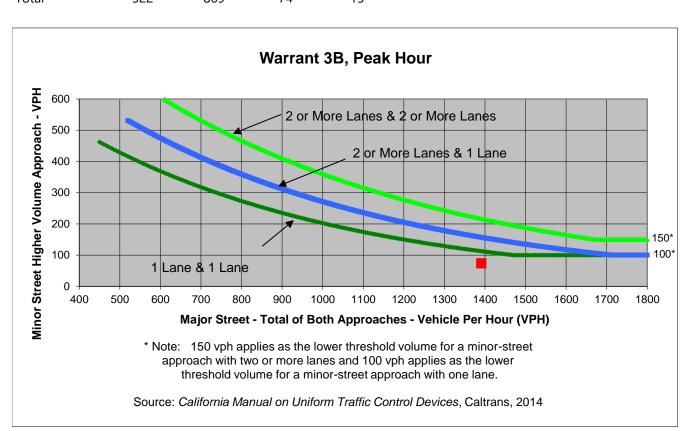
Worst Case Delay for Minor Street

7.7
EB
57

Warrant 3A, Peak Hour						
	Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume On Minor Approach (vph) Peak Hour Enter On Minor Approach (vph)					
Existing plus Project	0.1	59	247			
Limiting Value	4	100	800			
Condition Satisfied?	Not Met Not Met Not Met					
Warrant Met	NO					

Major Street Minor Street Highland Avenue **Evergreen Street**


Project Scenario


Duarte Station Specific Plan Existing plus Project Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	7	90	22	0
Through	512	748	2	2
Right	3	31	50	13
Total	522	869	74	15

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Highland Avenue	Evergreen Street	vvariant iviet
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) *	1,391	74	NO NO

Major Street Minor Street Highland Avenue **Evergreen Street**

Project Scenario

Duarte Station Specific Plan Existing plus Project Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	7	90	22	0
Through	512	748	2	2
Right	3	31	50	13
Total	522	869	74	15

Major Street Direction

X	North/South
	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

1	
4	

Worst Case Delay for Minor Street

31	.8
EB	3
74	4

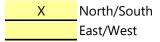
Warrant 3A, Peak Hour					
Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume on Minor Approach (vph) Peak Hour Enteri Volume Service (vph)					
Existing plus Project	0.7	74	1,480		
Limiting Value	4	100	800		
Condition Satisfied?	Not Met	Not Met	Met		
Warrant Met	NO				

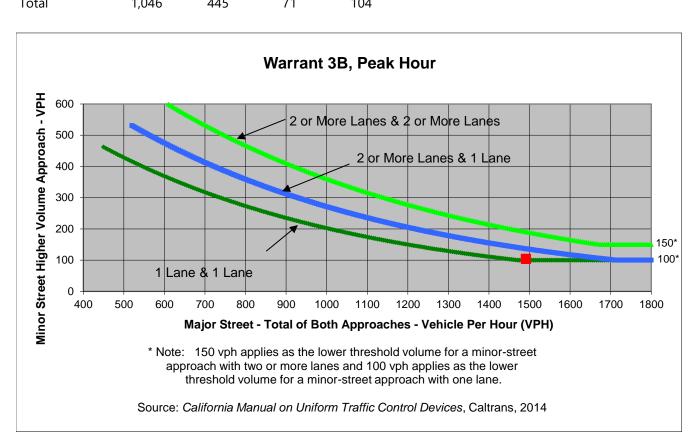
Major Street Minor Street Highland Avenue

Evergreen Street

Project Scenario Peak Hour

Duarte Station Specific Plan


Existing plus Project


PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	5	13	44	3
Through	1,036	416	1	0
Right	5	16	26	101
Total	1 0/16	115	71	104

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Highland Avenue	Evergreen Street	vvariant wet
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) *	1,491	104	NO NO

Major Street Minor Street Highland Avenue **Evergreen Street**

Project Scenario

Duarte Station Specific Plan Existing plus Project Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	5	13	44	3
Through	1,036	416	1	0
Right	5	16	26	101
Total	1,046	445	71	104

Major Street Direction

X	North/South	
	East/West	

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

1

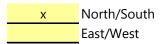
Worst Case Delay for Minor Street

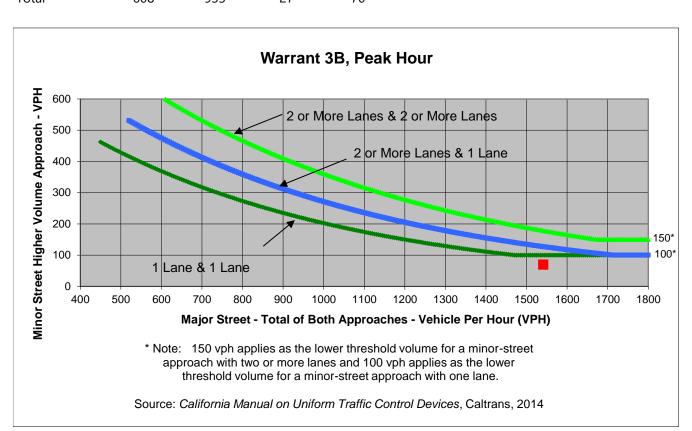
36.9
EB
71

Warrant 3A, Peak Hour					
	Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume On Minor Approach (vph) Peak Hour Enter On Minor Approach (vph)				
Existing plus Project	0.7	104	1,666		
Limiting Value	4	100	800		
Condition Satisfied?	Not Met	Met	Met		
Warrant Met	<u>NO</u>				

Major Street Minor Street Buena Vista Street

3 Ranch Road


Project Scenario Peak Hour


Duarte Station Specific Plan
Future Base
AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	8	10	5	28
Through	568	908	3	2
Right	32	15	19	40
Total	608	933	27	70

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Buena Vista Street	3 Ranch Road	vvarrant iviet
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) *	1,541	70	<u>NO</u>

Major Street Minor Street Buena Vista Street 3 Ranch Road

Project Scenario

Duarte Station Specific Plan Future Base Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	8	10	5	28
Through	568	908	3	2
Right	32	15	19	40
Total	608	933	27	70

Major Street Direction

X	North/South
	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

Worst Case Delay for Minor Street

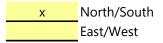
26.9)
EB	
27	

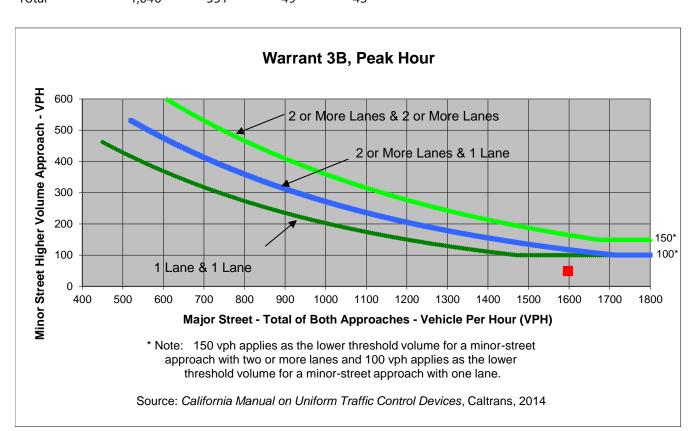
Warrant 3A, Peak Hour					
	Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume Peak Hour Entering On Minor Approach (vph) (vph)				
Future Base	0.2	70	1,638		
Limiting Value	4	100	800		
Condition Satisfied?	Not Met	Not Met	Met		
Warrant Met	NO				

Major Street Minor Street Buena Vista Street

3 Ranch Road

Project Scenario Peak Hour


PM


Duarte Station Specific Plan Future Base

Turn Movement Volumes

	NB	SB	EB	WB
Left	3	31	2	17
Through	1,015	496	8	1
Right	28	24	39	25
Total	1 046	551	49	43

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Buena Vista Street	3 Ranch Road	vvariant iviet
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) *	1,597	49	NO NO

Major Street Minor Street Buena Vista Street
3 Ranch Road

Project Dua Scenario Futu Peak Hour PM

Duarte Station Specific Plan
Future Base
PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	3	31	2	17
Through	1,015	496	8	1
Right	28	24	39	25
Total	1 046	551	19	43

Major Street Direction

Х	North/South
	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street Total Approaches 1 4

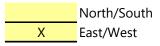
Worst Case Delay for Minor Street

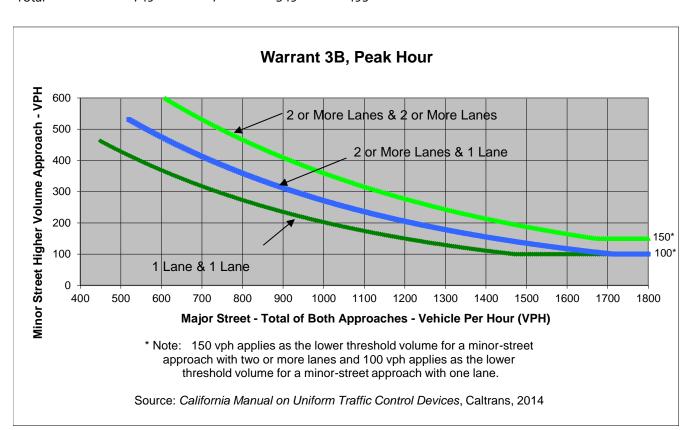
42.7
EB
49

Warrant 3A, Peak Hour					
	Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Delay on Peak Hour Volume On Minor Approach (vph) Peak Hour Delay on Peak Hour Volume On Minor Approach (vph)				
Future Base	0.6	49	1,689		
Limiting Value	4	100	800		
Condition Satisfied?	Not Met	Not Met	Met		
Warrant Met		<u>NO</u>			

Major Street Minor Street Central Ave I-210 WB Off-ramp Project Scenario Peak Hour

AM


Duarte Station Specific Plan Future Base


_

Turn Movement Volumes

	NB	SB	EB	WB
Left	388	0	4	0
Through	0	0	345	487
Right	361	7	0	8
Total	749	7	349	495

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Central Ave	I-210 WB Off-ramp	Wallant Mcc
Number of Approach Lanes	2	2	VEC
Traffic Volume (VPH) *	844	749	YES

Major Street Minor Street Central Ave I-210 WB Off-ramp Project Scenario

Duarte Station Specific Plan Future Base Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	388	0	4	0
Through	0	0	345	487
Right	361	7	0	8
Total	749	7	349	495

Major Street Direction

	North/South
Χ	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

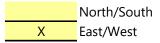
2 4

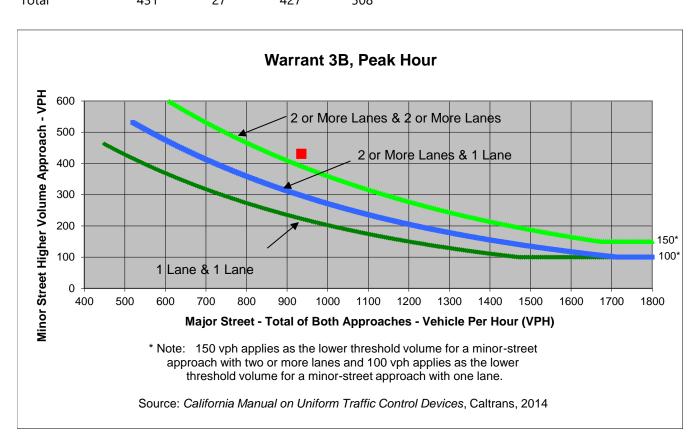
Worst Case Delay for Minor Street

201.8	
EB	
349	

Warrant 3A, Peak Hour					
	Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume On Minor Approach (vph) Peak Hour Entering Volume Services (vph)				
Future Base	19.6	749	1,600		
Limiting Value	5	150	800		
Condition Satisfied?	Met	Met	Met		
Warrant Met	YES				

Major Street Minor Street Central Ave I-210 WB Off-ramp Project Scenario Duarte Station Specific Plan Future Base


Peak Hour


PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	258	3	6	0
Through	0	0	421	498
Right	173	24	0	10
Total	<i>1</i> 31	27	/127	508

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Central Ave	I-210 WB Off-ramp	vvarrant wice
Number of Approach Lanes	2	2	VEC
Traffic Volume (VPH) *	935	431	<u>YES</u>

Major Street Minor Street Central Ave I-210 WB Off-ramp Project Scenario

Duarte Station Specific Plan Future Base Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	258	3	6	0
Through	0	0	421	498
Right	173	24	0	10
Total	431	27	427	508

Major Street Direction

North/South East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

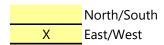
2 4

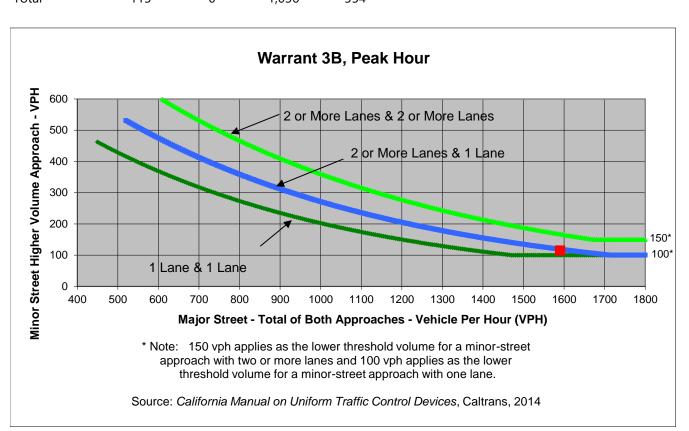
Worst Case Delay for Minor Street

159.0	
EB	
427	

Warrant 3A, Peak Hour					
	Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume on Minor Approach (vph) Peak Hour Entering Volume Serviced (vph)				
Future Base	18.9	431	1,393		
Limiting Value	5	150	800		
Condition Satisfied?	Met	Met	Met		
Warrant Met		YES			

Major Street Minor Street Duarte Road
Village Road


Project Scenario Duarte Station Specific Plan
Future Base


Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	91	0	0	207
Through	0	0	632	347
Right	24	0	404	0
Total	115	0	1 036	554

Major Street Direction

	Major Street	Minor Street	Warrant Met	
	Duarte Road	Village Road	vvariant iviet	
Number of Approach Lanes	2	1	NO	
Traffic Volume (VPH) *	1,590	115	- <u>NO</u>	

Major Street Minor Street **Duarte Road** Village Road Project Scenario

Duarte Station Specific Plan Future Base Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	91	0	0	207
Through	0	0	632	347
Right	24	0	404	0
Total	115	0	1.036	554

Major Street Direction

North/South East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

1 3

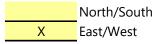
Worst Case Delay for Minor Street

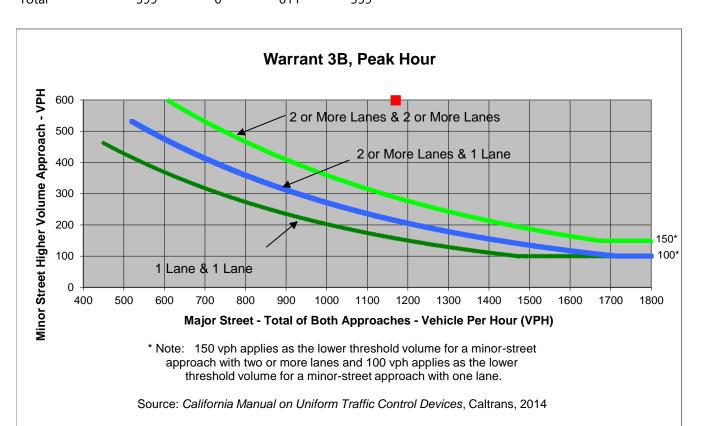
305.9	
EB	
1,036	

Warrant 3A, Peak Hour					
	Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume Peak Hour Entering Volume Serviced (vph)				
Future Base	88	115	1,705		
Limiting Value	4	100	650		
Condition Satisfied?	Met	Met	Met		
Warrant Met		YES			

Major Street Minor Street Duarte Road
Village Road

Project Scenario Duarte Station Specific Plan
Future Base


Peak Hour PM


Л

Turn Movement Volumes

	NB	SB	EB	WB
Left	388	0	0	17
Through	0	0	545	542
Right	211	0	66	0
Total	500	Λ	611	550

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Duarte Road	Village Road	vvarrant wet
Number of Approach Lanes	2	1	VEC
Traffic Volume (VPH) *	1,170	599	YES YES

Major Street Minor Street **Duarte Road** Village Road Project Scenario

Duarte Station Specific Plan Future Base Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	388	0	0	17
Through	0	0	545	542
Right	211	0	66	0
Total	599	0	611	559

Major Street Direction

	North/South
Χ	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

1 3

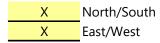
Worst Case Delay for Minor Street

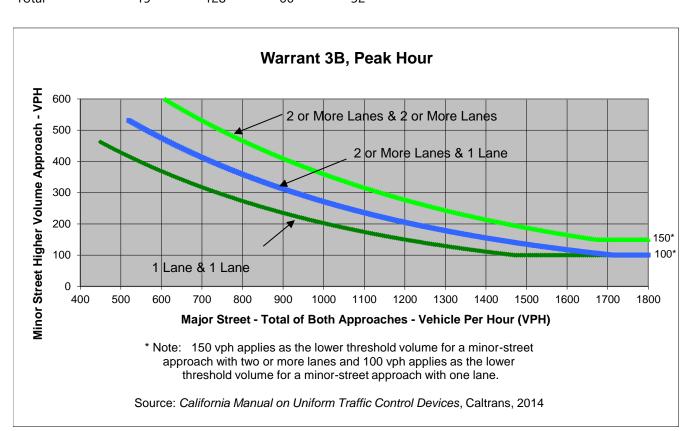
238.3	
EB	
611	

Warrant 3A, Peak Hour						
	Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume On Minor Approach (vph) Peak Hour Entering (vph) Peak Hour Entering (vph)					
Future Base	40.4	599	1,769			
Limiting Value	4	100	650			
Condition Satisfied?	Met	Met	Met			
Warrant Met		YES				

Major Street Minor Street Duncannan Avenue
Evergreen Street

Project Scenario Peak Hour


AM


Duarte Station Specific Plan Future Base

Turn Movement Volumes

	NB	SB	EB	WB
Left	5	94	47	4
Through	8	5	19	11
Right	2	29	0	17
Total	15	128	66	32

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Duncannan Avenue	Evergreen Street	vvairant iviet
Number of Approach Lanes	1	1	NO
Traffic Volume (VPH) *	98	128	<u>NO</u>

Major Street Minor Street Duncannan Avenue **Evergreen Street**

Project Scenario

Duarte Station Specific Plan Future Base Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	5	94	47	4
Through	8	5	19	11
Right	2	29	0	17
Total	15	128	66	32

Major Street Direction

X	North/South
X	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

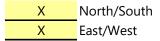
1

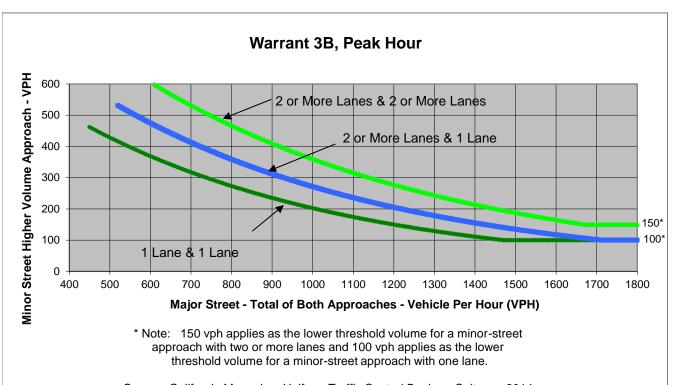
Worst Case Delay for Minor Street

7.8	
EB	
66	

Warrant 3A, Peak Hour					
Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume On Minor Approach (vph) Peak Hour Entering On Minor Approach (vph)					
Future Base	0.1	66	241		
Limiting Value	4	100	800		
Condition Satisfied?	Not Met	Not Met	Not Met		
Warrant Met	<u>NO</u>				

Major Street Minor Street **Duncannan Avenue Evergreen Street**


Project Scenario **Duarte Station Specific Plan Future Base**


Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	46	33	0
Through	9	14	19	23
Right	3	36	1	30
Total	12	96	52	53

Major Street Direction

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	Duncannan Avenue	Evergreen Street	vvarrant iviet
Number of Approach Lanes	1	1	NO
Traffic Volume (VPH) *	106	96	<u>NO</u>

Major Street Minor Street Duncannan Avenue **Evergreen Street**

Project Scenario

Duarte Station Specific Plan Future Base Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	46	33	0
Through	9	14	19	23
Right	3	36	1	30
Total	13	96	53	53

Major Street Direction

X	North/South
X	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

Worst Case Delay for Minor Street

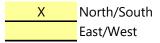
7.5	
EB	
53	

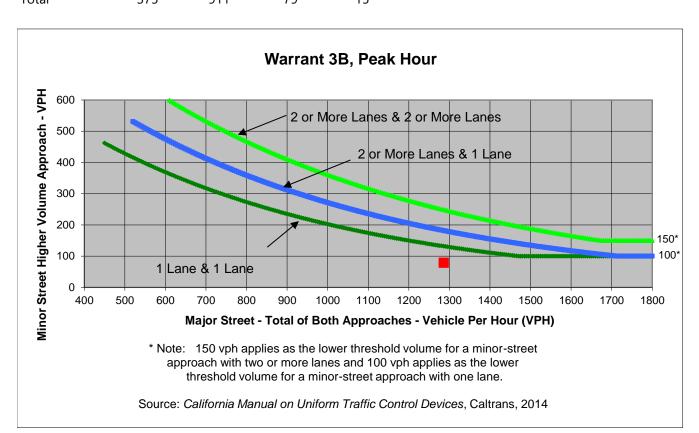
Warrant 3A, Peak Hour				
Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume On Minor Approach (vph) Peak Hour Entering (vph) Peak Hour Volume On Minor Approach (vph)				
Future Base	0.1	53	215	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Not Met	Not Met	
Warrant Met		<u>NO</u>		

Major Street Minor Street Highland Avenue

Evergreen Street

Project Scenario Duarte Station Specific Plan
Future Base


Peak Hour AM


M

Turn Movement Volumes

	NB	SB	EB	WB
Left	5	93	24	0
Through	367	789	2	2
Right	3	29	53	13
Total	375	911	79	15

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Highland Avenue	Evergreen Street	vvarrant iviet
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) *	1,286	79	NO NO

* Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street Highland Avenue

Evergreen Street

Project Dua Scenario Futu Peak Hour AM

Duarte Station Specific Plan
Future Base
AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	5	93	24	0
Through	367	789	2	2
Right	3	29	53	13
Total	375	911	79	15

Major Street Direction

Х	North/South	
	East/West	

Intersection Geometry

Number of Approach Lanes for Minor Street Total Approaches 1

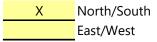
Worst Case Delay for Minor Street

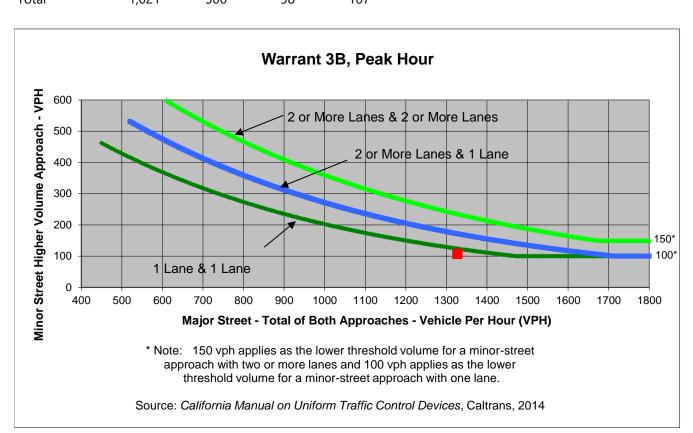
Stopped Delay (seconds per vehicle) Approach with Worst Case Delay Total Vehicles on Approach 30.7 EB 79

Warrant 3A, Peak Hour				
Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume on Minor Approach (vph) Peak Hour Entering on Winor Approach (vph)				
Future Base	0.7	79	1,380	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met		<u>NO</u>		

Major Street Minor Street Highland Avenue
Evergreen Street

Project Scenario Duarte Station Specific Plan
Future Base


Peak Hour PN


PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	5	13	36	3
Through	1,011	275	1	0
Right	5	18	21	104
Total	1 021	306	58	107

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Highland Avenue	Evergreen Street	vvarrant iviet
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) *	1,327	107	<u>NO</u>

* Note: Traffic Volume for Major Street is Total Volume of Both Approachs.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street Highland Avenue **Evergreen Street**

Project Scenario

Duarte Station Specific Plan Future Base Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	5	13	36	3
Through	1,011	275	1	0
Right	5	18	21	104
Total	1,021	306	58	107

Major Street Direction

X	North/South
	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

1

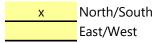
Worst Case Delay for Minor Street

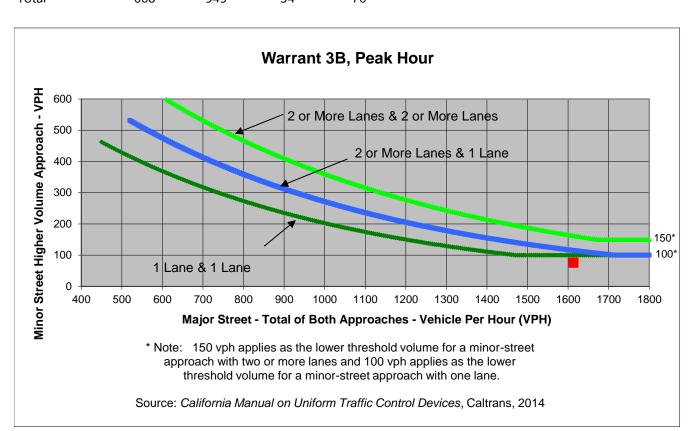
25.0
EB
58

Warrant 3A, Peak Hour					
	Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume Peak Hour Enter on Minor Approach (vph) (vph)				
Future Base	0.4	107	1,492		
Limiting Value	4	100	800		
Condition Satisfied?	Not Met	Met	Met		
Warrant Met		<u>NO</u>			

Major Street Minor Street Buena Vista Street

3 Ranch Road


Project Scenario Peak Hour


Duarte Station Specific Plan
Future plus Project
AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	8	10	5	31
Through	627	920	4	5
Right	33	15	25	40
Total	668	945	34	76

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Buena Vista Street	3 Ranch Road	vvariant wet
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) *	1,613	76	<u>NO</u>

* Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street Buena Vista Street 3 Ranch Road

Project Scenario

Duarte Station Specific Plan Future plus Project Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	8	10	5	31
Through	627	920	4	5
Right	33	15	25	40
Total	668	945	34	76

Major Street Direction

X	North/South	
	East/West	

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

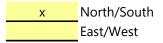
1

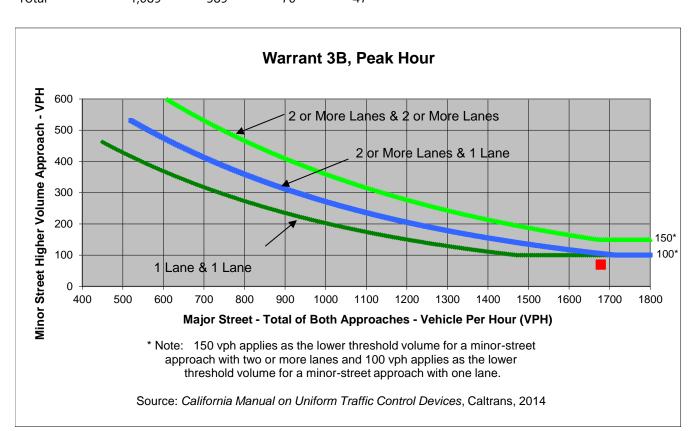
Worst Case Delay for Minor Street

37.5	
EB	
34	

	Warrant 3A, Peak Hour			
Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume on Minor Approach (vph) Peak Hour Enter Volume Service (vph)				
Future plus Project	0.4	76	1,723	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met		<u>NO</u>		

Major Street Minor Street Buena Vista Street


3 Ranch Road


Project Scenario Peak Hour Duarte Station Specific Plan
Future plus Project
PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	3	31	2	19
Through	1,055	534	11	3
Right	31	24	57	25
Total	1 089	589	70	47

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Buena Vista Street	3 Ranch Road	vvariant iviet
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) *	1,678	70	<u>NO</u>

Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street Buena Vista Street 3 Ranch Road

Project Scenario

Duarte Station Specific Plan Future plus Project Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	3	31	2	19
Through	1,055	534	11	3
Right	31	24	57	25
Total	1 089	589	70	<i>4</i> 7

Major Street Direction

Х	North/South
	East/West

Intersection Geometry

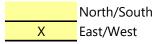
Number of Approach Lanes for Minor Street **Total Approaches**

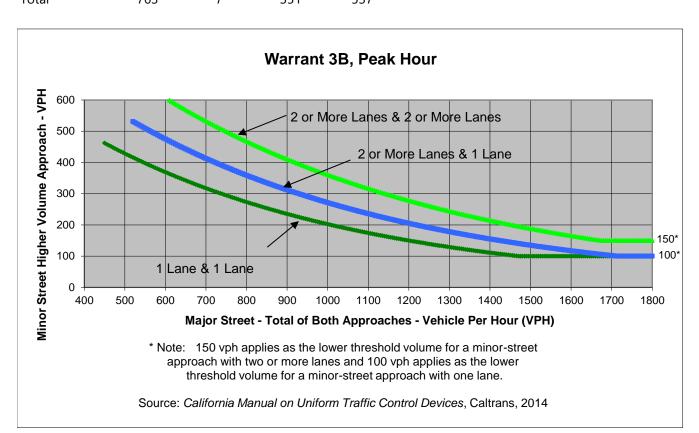
1	
4	

Worst Case Delay for Minor Street

63.4
EB
70

Warrant 3A, Peak Hour					
	Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume Peak Hour Entering Volume Serviced (vph)				
Future plus Project	1.2	70	1,795		
Limiting Value	4	100	800		
Condition Satisfied?	Not Met Not Met Met				
Warrant Met	<u>NO</u>				


Major Street Minor Street Central Ave I-210 WB Off-ramp Project Scenario Peak Hour


Duarte Station Specific Plan
Future plus Project
AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	388	0	4	0
Through	0	0	347	529
Right	375	7	0	8
Total	763	7	351	537

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Central Ave	I-210 WB Off-ramp	vvarrant wice
Number of Approach Lanes	2	2	VEC
Traffic Volume (VPH) *	888	763	<u>YES</u>

Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street Central Ave I-210 WB Off-ramp Project Scenario

Duarte Station Specific Plan Future plus Project Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	388	0	4	0
Through	0	0	347	529
Right	375	7	0	8
Total	763	7	351	537

Major Street Direction

	North/South
Χ	East/West

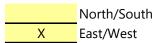
Intersection Geometry

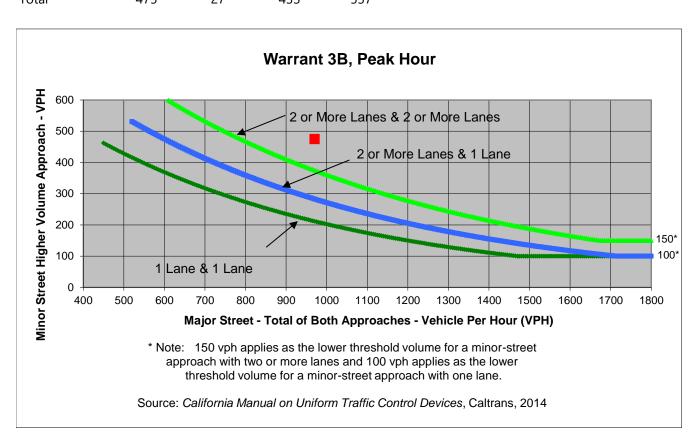
Number of Approach Lanes for Minor Street **Total Approaches**

2

Worst Case Delay for Minor Street

228.3
EB
351


Warrant 3A, Peak Hour					
	Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume Peak Hour Entering Volume Serviced (vph)				
Future plus Project	22.3	763	1,658		
Limiting Value	5	150	800		
Condition Satisfied?	Met	Met	Met		
Warrant Met		YES			


Major Street Minor Street Central Ave I-210 WB Off-ramp Project Scenario Peak Hour Duarte Station Specific Plan
Future plus Project
PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	258	3	6	0
Through	0	0	427	527
Right	217	24	0	10
Total	475	27	4 33	537

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Central Ave	I-210 WB Off-ramp	vvairant iviet
Number of Approach Lanes	2	2	VEC
Traffic Volume (VPH) *	970	475	<u>YES</u>

Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street Central Ave I-210 WB Off-ramp Project Scenario

Duarte Station Specific Plan Future plus Project Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	258	3	6	0
Through	0	0	427	527
Right	217	24	0	10
Total	475	27	433	537

Major Street Direction

North/South East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

2 4

Worst Case Delay for Minor Street

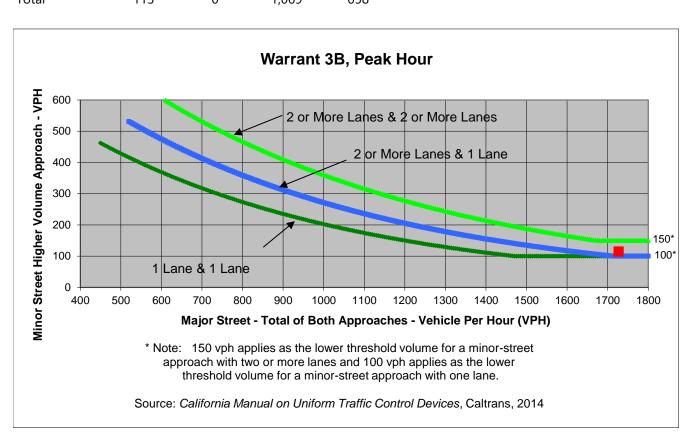
168.0	
EB	
433	

Warrant 3A, Peak Hour						
	Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume Peak Hour Entering Volume Serviced (vph)					
Future plus Project	20.2	475	1,472			
Limiting Value	5	150	800			
Condition Satisfied?	Met	Met	Met			
Warrant Met	YES					

Major Street Minor Street Duarte Road
Village Road

Project Scenario Duarte Station Specific Plan Future plus Project

Peak Hour


AM

Major Street Direction

	North/South
Χ	East/West

Turn Movement Volumes

	NB	SB	EB	WB
Left	91	0	0	207
Through	0	0	665	451
Right	24	0	404	0
Total	115	0	1 069	658

	Major Street	Minor Street	Warrant Met
	Duarte Road	Village Road	vvarrant iviet
Number of Approach Lanes	2	1	VEC
Traffic Volume (VPH) *	1,727	115	<u>YES</u>

* Note: Traffic Volume for Major Street is Total Volume of Both Approachs.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street **Duarte Road** Village Road Project Scenario

Duarte Station Specific Plan Future plus Project Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	91	0	0	207
Through	0	0	665	451
Right	24	0	404	0
Total	115	0	1,069	658

Major Street Direction

North/South East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

1 3

Worst Case Delay for Minor Street

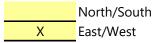
Stopped Delay (seconds per vehicle) Approach with Worst Case Delay Total Vehicles on Approach

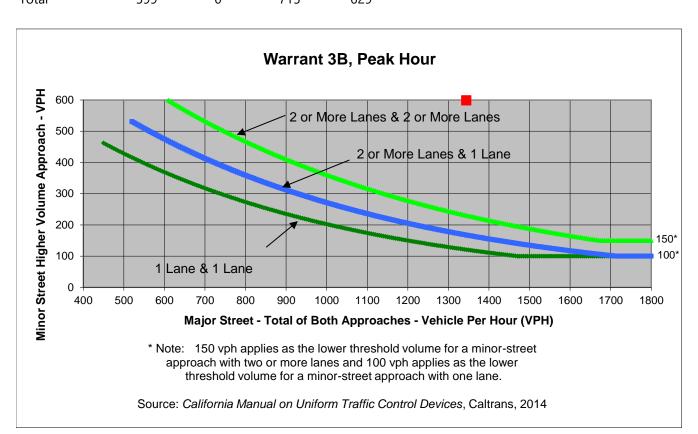
406.8 EB 1,069

Warrant 3A, Peak Hour						
	Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume On Minor Approach (vph) Peak Hour Entering Volume Serviced (vph)					
Future plus Project	120.8	115	1,842			
Limiting Value	4	100	650			
Condition Satisfied?	Met Met Met					
Warrant Met	YES					

Major Street Minor Street Duarte Road
Village Road

Project Scenario Duarte Station Specific Plan
Future plus Project


Peak Hour F


PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	388	0	0	17
Through	0	0	649	612
Right	211	0	66	0
Total	599	0	715	629

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Duarte Road	Village Road	vvariant iviet
Number of Approach Lanes	2	1	VEC
Traffic Volume (VPH) *	1,344	599	<u>YES</u>

Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street **Duarte Road** Village Road Project Scenario

Duarte Station Specific Plan Future plus Project Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	388	0	0	17
Through	0	0	649	612
Right	211	0	66	0
Total	599	0	715	629

Major Street Direction

North/South East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

1 3

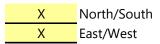
Worst Case Delay for Minor Street

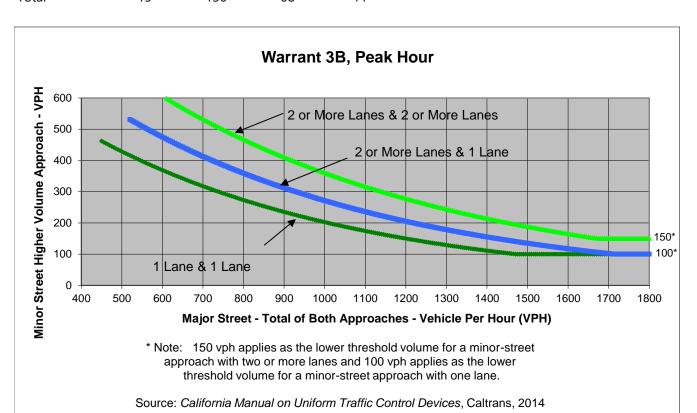
Stopped Delay (seconds per vehicle) Approach with Worst Case Delay Total Vehicles on Approach

367.2 EB 715

	Warrant 3A, Peak Hour					
	Peak Hour Delay on Minor Approach (vehicle-hours) Peak Hour Volume Peak Hour Entering Volume Serviced (vph)					
Future plus Project	72.9	599	1,943			
Limiting Value	4	100	650			
Condition Satisfied?	Met	Met	Met			
Warrant Met	YES					

Major Street Minor Street Duncannan Avenue
Evergreen Street


Project Scenario Peak Hour


Duarte Station Specific Plan
Future plus Project
AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	5	102	47	4
Through	8	5	21	17
Right	2	29	0	23
Total	15	136	68	44

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Duncannan Avenue	Evergreen Street	vvarrant iviet
Number of Approach Lanes	1	1	NO
Traffic Volume (VPH) *	112	136	<u>NO</u>

Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street Duncannan Avenue **Evergreen Street**

Project Scenario

Duarte Station Specific Plan Future plus Project Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	5	102	47	4
Through	8	5	21	17
Right	2	29	0	23
Total	15	136	68	44

Major Street Direction

X	North/South
X	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

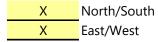
Worst Case Delay for Minor Street

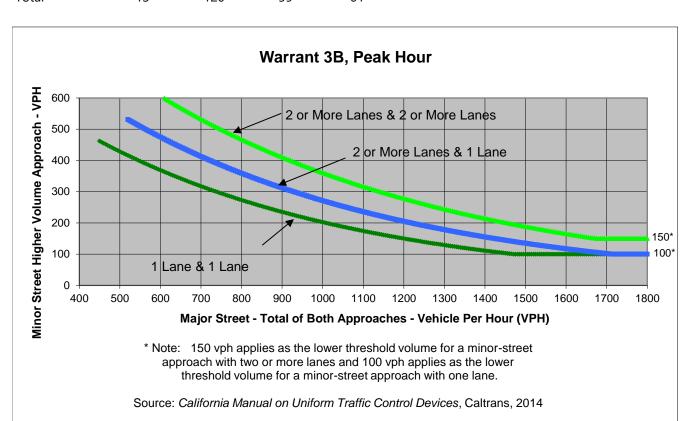
7.9	
EB	
68	i

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
Future plus Project	0.1	68	263	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Not Met	Not Met	
Warrant Met		<u>NO</u>		

Major Street Minor Street Duncannan Avenue
Evergreen Street

Project Scenario Duarte Station Specific Plan
Future plus Project


Peak Hour PM


M

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	70	33	0
Through	9	14	25	27
Right	3	36	1	34
Total	13	120	59	61

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Duncannan Avenue	Evergreen Street	vvarrant iviet
Number of Approach Lanes	1	1	NO
Traffic Volume (VPH) *	120	120	<u>NO</u>

* Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street Duncannan Avenue **Evergreen Street**

Project Scenario

Duarte Station Specific Plan Future plus Project Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	70	33	0
Through	9	14	25	27
Right	3	36	1	34
Total	13	120	59	61

Major Street Direction

X	North/South
X	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

1 4

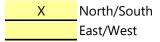
Worst Case Delay for Minor Street

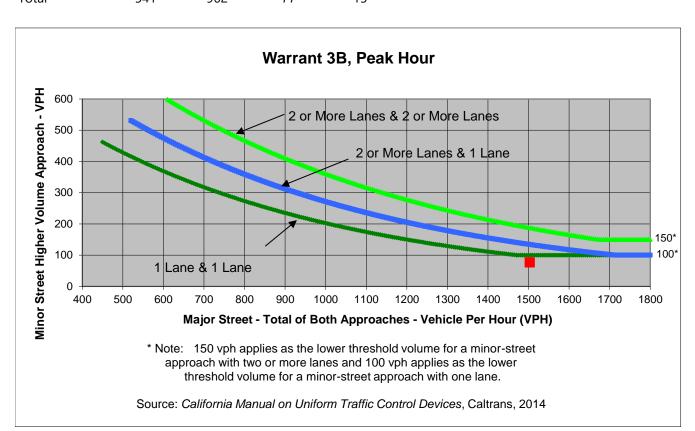
Stopped Delay (seconds per vehicle) Approach with Worst Case Delay Total Vehicles on Approach

7.7 EB 59

Warrant 3A, Peak Hour			
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
Future plus Project	0.1	61	253
Limiting Value	4	100	800
Condition Satisfied?	Not Met	Not Met	Not Met
Warrant Met	<u>NO</u>		

Major Street Minor Street Highland Avenue
Evergreen Street


Project Scenario Peak Hour


Duarte Station Specific Plan
Future plus Project
AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	7	93	23	0
Through	531	837	2	2
Right	3	32	52	13
Total	541	962	77	15

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Highland Avenue	Evergreen Street	vvarrant iviet
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) *	1,503	77	<u>NO</u>

* Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street Highland Avenue **Evergreen Street**

Project Scenario

Duarte Station Specific Plan Future plus Project Peak Hour AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	7	93	23	0
Through	531	837	2	2
Right	3	32	52	13
Total	541	962	77	15

Major Street Direction

Χ	North/South
	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

1 4

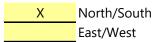
Worst Case Delay for Minor Street

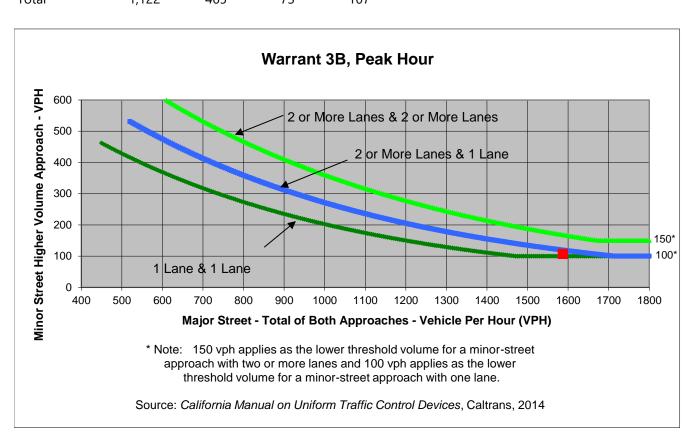
Stopped Delay (seconds per vehicle) Approach with Worst Case Delay Total Vehicles on Approach

42.7 EB 77

	Warrant 3A, Peak	Hour	
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
Future plus Project	0.9	77	1,595
Limiting Value	4	100	800
Condition Satisfied?	Not Met	Not Met	Met
Warrant Met		<u>NO</u>	

Major Street Minor Street Highland Avenue
Evergreen Street


Project Scenario Peak Hour


Duarte Station Specific Plan
Future plus Project
PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	5	13	45	3
Through	1,112	435	1	0
Right	5	17	27	104
Total	1 122	465	73	107

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Highland Avenue	Evergreen Street	vvariant iviet
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) *	1,587	107	NO NO

* Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

Major Street Minor Street Highland Avenue **Evergreen Street**

Project Scenario

Duarte Station Specific Plan Future plus Project Peak Hour PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	5	13	45	3
Through	1,112	435	1	0
Right	5	17	27	104
Total	1,122	465	73	107

Major Street Direction

X	North/South
	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street **Total Approaches**

1

Worst Case Delay for Minor Street

45.1
EB
73

	Warrant 3A, Peak	Hour	
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
Future plus Project	0.9	107	1,767
Limiting Value	4	100	800
Condition Satisfied?	Not Met	Met	Met
Warrant Met		<u>NO</u>	

APPENDIX F: FREEWAY ANALYSIS - MAINLINE & QUEUEING

CALTRANS ANALYSIS - QUEUEING

1: Mountain Ave & Central Ave/I-210 WB Off-ramp

	•	←	4	†	ļ
Lane Group	WBL	WBT	NBL	NBT	SBT
Lane Group Flow (vph)	316	1192	215	525	709
v/c Ratio	0.47	0.85	0.80	0.29	0.67
Control Delay	24.7	28.5	54.3	6.8	30.0
Queue Delay	0.1	0.0	0.0	0.2	0.0
Total Delay	24.8	28.5	54.3	7.0	30.0
Queue Length 50th (ft)	130	262	126	80	177
Queue Length 95th (ft)	232	#448	118	12	238
Internal Link Dist (ft)		2130		247	297
Turn Bay Length (ft)			200		
Base Capacity (vph)	678	1406	418	2001	1052
Starvation Cap Reductn	0	0	4	782	0
Spillback Cap Reductn	20	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.48	0.85	0.52	0.43	0.67
Intersection Summary					

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Duarte Station 04/04/2019
Fehr & Peers
Synchro 10 Report
Page 1

Queue shown is maximum after two cycles.

2: Mountain Ave & Evergreen St

	۶	→	\rightarrow	†	>	↓
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT
Lane Group Flow (vph)	322	345	202	570	353	512
v/c Ratio	0.64	0.34	0.34	0.42	0.64	0.24
Control Delay	33.7	25.6	4.9	21.5	17.4	10.9
Queue Delay	0.0	0.0	0.0	0.0	0.6	0.4
Total Delay	33.7	25.6	4.9	21.5	18.1	11.3
Queue Length 50th (ft)	158	80	0	110	136	101
Queue Length 95th (ft)	228	108	45	194	219	137
Internal Link Dist (ft)		1293		344		247
Turn Bay Length (ft)			150		210	
Base Capacity (vph)	607	1215	676	1373	642	2134
Starvation Cap Reductn	0	0	0	0	85	1070
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.53	0.28	0.30	0.42	0.63	0.48
Intersection Summary						

Duarte Station 04/04/2019 Synchro 10 Report Page 2

7: Buena Vista St & Evergreen St

	-	†	<i>></i>	>	ļ
Lane Group	EBT	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	754	383	212	241	397
v/c Ratio	0.60	0.48	0.41	0.61	0.21
Control Delay	11.2	22.7	6.2	28.5	8.1
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	11.2	22.7	6.2	28.5	8.1
Queue Length 50th (ft)	60	63	0	79	37
Queue Length 95th (ft)	109	100	45	143	57
Internal Link Dist (ft)	2524	98			219
Turn Bay Length (ft)					
Base Capacity (vph)	1267	790	518	395	1852
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.60	0.48	0.41	0.61	0.21
Intersection Summary					

Duarte Station 04/04/2019
Fehr & Peers
Synchro 10 Report
Page 3

Intersection												
Int Delay, s/veh 41	.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			₽		ች		1		4	
Traffic Vol, veh/h	4	334	0	0	472	8	298	1	334	0	0	7
Future Vol, veh/h	4	334	0	0	472	8	298	1	334	0	0	7
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	535	-	0	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	363	0	0	513	9	324	1	363	0	0	8
Major/Minor	Major1		ı	Major2		1	Minor1			Minor2		
Conflicting Flow All	522	0	<u>-</u>	- -	_	0	893	893	363	1071	889	518
Stage 1	-	-	_	_	_	-	371	371	-	518	518	-
Stage 2	_	_	_	_	_	_	522	522	_	553	371	_
Critical Hdwy	4.12	_	_	_	_	_	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	- 1.12	_	_	<u>-</u>	_	_	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	_	_	_	_	_	_	6.12	5.52	_	6.12	5.52	_
Follow-up Hdwy	2.218	_	_	<u>-</u>	_	_						3.318
Pot Cap-1 Maneuver	1044	_	0	0	_	_	~ 262	281	682	198	282	558
Stage 1	-	_	0	0	_	-	649	620	-	541	533	-
Stage 2	_	-	0	0	_	_	538	531	-	517	620	-
Platoon blocked, %		-		-	-	-				•		
Mov Cap-1 Maneuver	1044	_	-	_	_	-	~ 258	280	682	92	281	558
Mov Cap-2 Maneuver	-	-	-	-	-		~ 258	280	-	92	281	-
Stage 1	-	-	-	-	-	-	646	617	-	538	533	-
Stage 2	-	-	-	-	-	-	531	531	-	240	617	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0			94.4			11.5		
HCM LOS	• • • • • • • • • • • • • • • • • • • •						F			В		
Minor Lane/Major Mvmt	NBLn11	NBLn2	EBL	EBT	WBT	WBR S	SBLn1					
Capacity (veh/h)	258	682	1044	-	_	-	558					
HCM Lane V/C Ratio		0.532		_	_	_	0.014					
HCM Control Delay (s)	182.2	16.1	8.5	0	-	-	11.5					
HCM Lane LOS	F	C	A	A	_	-	В					
HCM 95th %tile Q(veh)	15.9	3.2	0	-	-	-	0					
Notes												
votes ~: Volume exceeds capacit	v ¢. D.	Nov ove	oods 3)nc	+: Com	nutation	Not D	ofinad	*. AII	major	/olumo	in platace
 volume exceeds capacit 	y \$: Dε	ay exc	eeds 3	JUS	+: Com	putation	ם זטאו ו	eimea	: All	major \	volume	in platoor

	ၨ	→	•	•	←	•	•	†	~	\	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	62	255	329	351	1153	90	455	458	264	91	454	
v/c Ratio	0.46	0.26	0.49	1.40	0.90	0.14	0.99	0.97	0.43	0.35	0.86	
Control Delay	64.4	34.9	6.3	242.5	47.9	4.7	83.0	78.5	8.1	48.5	63.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	64.4	34.9	6.3	242.5	47.9	4.7	83.0	78.5	8.1	48.5	63.3	
Queue Length 50th (ft)	47	81	0	~364	456	0	370	370	9	64	174	
Queue Length 95th (ft)	93	118	70	#552	#613	30	#655	#654	81	110	223	
Internal Link Dist (ft)		712			645			1250			786	
Turn Bay Length (ft)	90		240	180		100	515			75		
Base Capacity (vph)	147	973	673	250	1280	637	461	473	614	337	673	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.42	0.26	0.49	1.40	0.90	0.14	0.99	0.97	0.43	0.27	0.67	

Intersection Summary

Synchro 10 Report Duarte Station 04/04/2019 Fehr & Peers Page 4

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	€	•	1	†	Ţ
Lane Group	WBL	WBT	NBL	NBT	SBT
Lane Group Flow (vph)	268	570	308	571	1042
v/c Ratio	0.75	0.64	0.88	0.24	0.69
Control Delay	46.3	18.1	52.1	0.9	25.7
Queue Delay	0.2	0.0	1.0	0.3	0.1
Total Delay	46.5	18.1	53.1	1.1	25.8
Queue Length 50th (ft)	148	74	106	2	232
Queue Length 95th (ft)	194	106	m195	m15	#467
Internal Link Dist (ft)		2130		247	297
Turn Bay Length (ft)			200		
Base Capacity (vph)	568	1240	419	2424	1509
Starvation Cap Reductn	0	0	22	1142	0
Spillback Cap Reductn	42	0	0	0	48
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.51	0.46	0.78	0.45	0.71
Intersection Summary					

Queue shown is maximum after two cycles.

Synchro 10 Report Duarte Station 04/04/2019 Fehr & Peers Page 1

⁹⁵th percentile volume exceeds capacity, queue may be longer.

m Volume for 95th percentile queue is metered by upstream signal.

2: Mountain Ave & Evergreen St

	•	→	•	†	-	↓
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT
Lane Group Flow (vph)	273	1258	146	778	475	599
v/c Ratio	0.45	1.03	0.24	0.86	0.97	0.31
Control Delay	25.7	63.1	9.7	41.7	49.4	15.0
Queue Delay	0.0	0.0	0.0	1.7	43.5	1.1
Total Delay	25.7	63.1	9.7	43.4	92.9	16.2
Queue Length 50th (ft)	119	~408	20	214	220	140
Queue Length 95th (ft)	191	#538	62	#315	#405	186
Internal Link Dist (ft)		1293		344		247
Turn Bay Length (ft)			150		210	
Base Capacity (vph)	613	1226	610	907	501	1922
Starvation Cap Reductn	0	0	0	0	76	1038
Spillback Cap Reductn	0	0	0	43	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.45	1.03	0.24	0.90	1.12	0.68

Intersection Summary

Synchro 10 Report Duarte Station 04/04/2019 Fehr & Peers Page 2

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	-	†	/	>	ļ
Lane Group	EBT	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	722	557	266	203	403
v/c Ratio	0.63	0.82	0.51	0.41	0.21
Control Delay	21.7	39.3	7.6	23.8	8.9
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	21.7	39.3	7.6	23.8	8.9
Queue Length 50th (ft)	129	122	0	71	44
Queue Length 95th (ft)	184	#199	57	127	66
Internal Link Dist (ft)	2524	98			219
Turn Bay Length (ft)					
Base Capacity (vph)	1147	677	518	490	1890
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.63	0.82	0.51	0.41	0.21
Intersection Summary					

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Duarte Station 04/04/2019

Fehr & Peers

Synchro 10 Report
Page 3

Queue shown is maximum after two cycles.

Intersection													
Int Delay, s/veh	28.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		र्स			(Î		Ť		7		4		
Traffic Vol, veh/h	6	408	0	0	483	10	222	4	165	3	0	23	
uture Vol, veh/h	6	408	0	0	483	10	222	4	165	3	0	23	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	535	-	0	-	-	-	
/eh in Median Storage, #	‡ -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	7	443	0	0	525	11	241	4	179	3	0	25	
												_,	
Major/Minor	Major1		N	Major2		ı	Minor1			Minor2			
Conflicting Flow All	536	0		-		0	1000	993	443	1080	988	531	
Stage 1	-	-	_	_	_	-	457	457	-	531	531	-	
Stage 2	_	_	_	_	_	_	543	536	_	549	457		
Critical Hdwy	4.12	_	_	_	_	_	7.12	6.52	6.22	7.12	6.52	6.22	
Critical Hdwy Stg 1	7.12	_	_	_	_	_	6.12	5.52	0.22	6.12	5.52	0.22	
Critical Hdwy Stg 2		_	_	_	_	_	6.12	5.52	_	6.12	5.52	-	
Follow-up Hdwy	2.218	_	_	_	_	_		4.018			4.018	3 318	
Pot Cap-1 Maneuver	1032	_	0	0	_	_	~ 222	245	615	196	247	548	
Stage 1	1032		0	0	_	_	583	568	013	532	526	J 4 0	
Stage 2	-	-	0	0	_	_	524	523		520	568	-	
Platoon blocked, %	-	_	U	U	_	-	524	525	_	320	500	-	
	1032				_	_	~ 210	243	615	136	245	548	
Mov Cap-1 Maneuver Mov Cap-2 Maneuver	1032	-	-	-	-		~ 210	243	010	136	245	J40 -	
•	-	-	<u>-</u>	-	-	-	578	563	-	527	526	-	
Stage 1	-	•	-	_	-	-	500	523	-	362	563	_	
Stage 2	<u>-</u>	-	-	<u>-</u>	<u>-</u>	-	300	JZJ	<u>-</u>	302	503	<u>-</u>	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.1			0			94.9			14.5			
	U. I			U			94.9 F						
HCM LOS							r			В			
Min no Lana (NA dia NA	NDI 41	UDI C	EDI	FDT	\A/DT	MED							
Minor Lane/Major Mvmt	NBLn11		EBL	EBT	WBT	WBR							
Capacity (veh/h)	210	615	1032	-	-	-	406						
ICM Lane V/C Ratio		0.292		-	-	-	0.07						
HCM Control Delay (s)	155.6	13.2	8.5	0	-	-	14.5						
HCM Lane LOS	F	В	Α	Α	-	-	В						
HCM 95th %tile Q(veh)	11.7	1.2	0	-	-	-	0.2						
Notes													
: Volume exceeds capac	city \$: De	elay exc	eeds 30	00s	+: Com	putation	n Not D	efined	*: All	maior v	volume	in platod	
	city \$: De	\$: Delay exceeds 300s		00s	+: Com	putation	n Not D	efined	*: All major volume in platoon				

Duarte Station 12/17/2018 Synchro 10 Report Fehr & Peers Page 2

	ၨ	→	•	•	•	•	•	†	/	\	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	97	920	866	276	507	46	236	244	687	84	344	
v/c Ratio	0.54	0.90	1.08	0.85	0.36	0.07	0.70	0.69	0.93	0.36	0.73	
Control Delay	57.2	49.8	71.7	64.7	24.3	0.2	49.8	49.1	31.1	46.8	51.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	57.2	49.8	71.7	64.7	24.3	0.2	49.8	49.1	31.1	46.8	51.2	
Queue Length 50th (ft)	63	313	~396	177	127	0	146	151	108	52	112	
Queue Length 95th (ft)	123	#519	#698	285	196	0	262	267	#382	104	171	
Internal Link Dist (ft)		712			645			1250			786	
Turn Bay Length (ft)	90		240	180		100	515			75		
Base Capacity (vph)	363	1017	804	454	1420	696	412	429	783	434	860	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.27	0.90	1.08	0.61	0.36	0.07	0.57	0.57	0.88	0.19	0.40	

Synchro 10 Report Duarte Station 04/04/2019 Fehr & Peers Page 4

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	<	←	~	†	ţ
Lane Group	WBL	WBT	NBL	NBT	SBT
Lane Group Flow (vph)	316	1192	215	540	714
v/c Ratio	0.47	0.85	0.80	0.30	0.68
Control Delay	24.8	28.6	53.6	6.8	30.0
Queue Delay	0.1	0.0	0.0	0.3	0.0
Total Delay	24.8	28.6	53.7	7.0	30.0
Queue Length 50th (ft)	130	263	126	84	178
Queue Length 95th (ft)	232	#448	114	12	241
Internal Link Dist (ft)		2130		247	297
Turn Bay Length (ft)			200		
Base Capacity (vph)	677	1404	418	2001	1055
Starvation Cap Reductn	0	0	4	781	0
Spillback Cap Reductn	20	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.48	0.85	0.52	0.44	0.68
Intersection Summary					

intersection Summary

Queue shown is maximum after two cycles.

Duarte Station 04/04/2019 Fehr & Peers

^{# 95}th percentile volume exceeds capacity, queue may be longer.

2: Mountain Ave & Evergreen St

	۶	→	\rightarrow	†	>	↓
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT
Lane Group Flow (vph)	322	351	202	586	353	517
v/c Ratio	0.64	0.35	0.34	0.43	0.65	0.24
Control Delay	33.7	25.7	4.9	21.8	17.8	11.1
Queue Delay	0.0	0.0	0.0	0.0	0.7	0.4
Total Delay	33.7	25.7	4.9	21.8	18.5	11.5
Queue Length 50th (ft)	158	82	0	115	136	103
Queue Length 95th (ft)	228	110	45	202	219	139
Internal Link Dist (ft)		1293		344		247
Turn Bay Length (ft)			150		210	
Base Capacity (vph)	607	1215	676	1372	635	2134
Starvation Cap Reductn	0	0	0	0	84	1072
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.53	0.29	0.30	0.43	0.64	0.49
Intersection Summary						

7: Buena Vista St & Evergreen St

	-	†	~	-	↓
Lane Group	EBT	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	767	401	258	241	397
v/c Ratio	0.60	0.51	0.47	0.61	0.21
Control Delay	11.1	23.1	6.3	28.5	8.1
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	11.1	23.1	6.3	28.5	8.1
Queue Length 50th (ft)	60	66	0	79	37
Queue Length 95th (ft)	109	105	50	143	57
Internal Link Dist (ft)	2524	98			219
Turn Bay Length (ft)					
Base Capacity (vph)	1276	790	553	395	1852
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.60	0.51	0.47	0.61	0.21
Intersection Summary					

Intersection Int Delay, s/veh	48.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स			(Î		Ť		7		4	
Traffic Vol, veh/h	4	336	0	0	514	8	298	0	348	0	0	7
Future Vol, veh/h	4	336	0	0	514	8	298	0	348	0	0	7
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	_	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	535	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	_	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	365	0	0	559	9	324	0	378	0	0	8
Major/Minor	Major1		ľ	Major2		ı	Minor1			Minor2		
Conflicting Flow All	568	0		-		0	941	_	365	1126	937	564
Stage 1	-	-	_	_	_	-	373	_	-	564	564	-
Stage 2	_	_		_	_	_	568	_	_	562	373	_
Critical Hdwy	4.12	_	_	_	_	_	7.12	_	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1		_	_	_	_	_	6.12	_	0.22	6.12	5.52	0.22
Critical Hdwy Stg 2	_	_	_	_	_	_	6.12	_	_	6.12	5.52	
Follow-up Hdwy	2.218	_	_	_	_	_	3.518	_		3.518		3 318
Pot Cap-1 Maneuver	1004	_	0	0	_		~ 243	0	680	182	265	525
Stage 1	1004	_	0	0	_	_	648	0	-	510	508	525
Stage 2		_	0	0	_	_	508	0	_	512	618	-
Platoon blocked, %	-	_	U	U	_	_	500	U	-	JIZ	010	-
Mov Cap-1 Maneuver	1004	-	_	_	-	<u>-</u>	~ 239	_	680	80	264	525
Mov Cap-1 Maneuver	1004	_	_	_	_		~ 239	_	-	80	264	525
Stage 1	<u>-</u>		<u>-</u>	_	_	-	645	<u>-</u>	_	507	508	_
Stage 2	<u>-</u>	_	_	_		_	501		_	226	615	_
Olaye Z	_	_	-	<u>-</u>	_	-	501	_	_	220	013	_
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0			112.7			12		
HCM LOS	U.1						F			В		
TION LOO							1			U		
Minor Lane/Major Mvmt	t NBLn1	NBLn2	EBL	EBT	WBT	WBR S	SBLn1					
Capacity (veh/h)	239	680	1004				525					
HCM Lane V/C Ratio		0.556		_	-	_	0.014					
					_	_						
HCM Lane LOS												
				-	_	-						
· · · · ·	17.0	U. 1										
M Control Delay (s)	224.8 F 17.5	16.7 C 3.4	8.6 A 0	0 A -	-	- -	12 B 0	efined	*: All	major v	volume	in plato

	ၨ	→	•	•	←	•	4	†	~	\	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	62	271	417	351	1159	90	466	476	264	91	454	
v/c Ratio	0.46	0.28	0.57	1.40	0.91	0.14	1.01	1.01	0.43	0.35	0.86	
Control Delay	64.4	35.1	6.5	242.5	48.3	4.7	88.6	87.8	9.0	48.5	63.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	64.4	35.1	6.5	242.5	48.3	4.7	88.6	87.8	9.0	48.5	63.3	
Queue Length 50th (ft)	47	86	0	~364	460	0	~388	~395	15	64	174	
Queue Length 95th (ft)	93	124	80	#552	#618	30	#675	#689	89	110	223	
Internal Link Dist (ft)		712			645			1250			786	
Turn Bay Length (ft)	90		240	180		100	515			75		
Base Capacity (vph)	147	973	737	250	1280	637	461	472	607	337	673	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.42	0.28	0.57	1.40	0.91	0.14	1.01	1.01	0.43	0.27	0.67	

Duarte Station 04/04/2019 Fehr & Peers

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	•	•	†	ļ
Lane Group	WBL	WBT	NBL	NBT	SBT
Lane Group Flow (vph)	268	570	308	582	1058
v/c Ratio	0.75	0.65	0.88	0.24	0.70
Control Delay	46.3	18.7	52.0	0.9	26.0
Queue Delay	0.2	0.0	1.0	0.3	0.1
Total Delay	46.5	18.7	53.0	1.2	26.1
Queue Length 50th (ft)	148	76	106	2	238
Queue Length 95th (ft)	194	109	m0	m16	#478
Internal Link Dist (ft)		2130		247	297
Turn Bay Length (ft)			200		
Base Capacity (vph)	568	1235	419	2424	1508
Starvation Cap Reductn	0	0	22	1138	0
Spillback Cap Reductn	43	0	0	0	48
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.51	0.46	0.78	0.45	0.72

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

m Volume for 95th percentile queue is metered by upstream signal.

	•	→	•	†	-	↓
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT
Lane Group Flow (vph)	273	1277	146	789	475	615
v/c Ratio	0.45	1.04	0.24	0.87	0.97	0.32
Control Delay	25.8	68.4	9.8	42.5	49.7	15.1
Queue Delay	0.0	0.0	0.0	1.8	43.2	1.2
Total Delay	25.8	68.4	9.8	44.3	92.9	16.3
Queue Length 50th (ft)	119	~421	20	218	221	145
Queue Length 95th (ft)	191	#551	62	#323	#406	192
Internal Link Dist (ft)		1293		344		247
Turn Bay Length (ft)			150		210	
Base Capacity (vph)	611	1223	607	910	500	1922
Starvation Cap Reductn	0	0	0	0	76	1037
Spillback Cap Reductn	0	0	0	42	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.45	1.04	0.24	0.91	1.12	0.69

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	-	†	/	>	ļ
Lane Group	EBT	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	763	568	298	203	403
v/c Ratio	0.66	0.84	0.55	0.41	0.21
Control Delay	22.0	40.5	7.8	23.8	8.9
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	22.0	40.5	7.8	23.8	8.9
Queue Length 50th (ft)	136	125	0	71	44
Queue Length 95th (ft)	194	#205	60	127	66
Internal Link Dist (ft)	2524	98			219
Turn Bay Length (ft)					
Base Capacity (vph)	1151	677	543	490	1890
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.66	0.84	0.55	0.41	0.21
Intersection Summary					

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

ntersection nt Delay, s/veh	31.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations		4			4		ሻ		7		4	
raffic Vol, veh/h	6	414	0	0	512	10	222	0	209	3	0	23
uture Vol, veh/h	6	414	0	0	512	10	222	0	209	3	0	23
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	535	-	0	-	-	-
eh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
leavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
/lvmt Flow	7	450	0	0	557	11	241	0	227	3	0	25
//ajor/Minor	Major1		ľ	Major2		ľ	Minor1			Minor2		
Conflicting Flow All	568	0	_	-	_	0	1039	_	450	1141	1027	563
Stage 1	-	-	-	_	_	-	464	_	-	563	563	-
Stage 2	_	_	_	_	_	_	575	_	_	578	464	_
Critical Hdwy	4.12	_	-	_	_	-	7.12	_	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	_	-	_	_	6.12	_	-	6.12	5.52	-
Critical Hdwy Stg 2	_	_	_	_	_	_	6.12	_	_	6.12	5.52	-
Follow-up Hdwy	2.218	_	_	_	_	_	3.518	_	3.318	3.518		3 318
Pot Cap-1 Maneuver	1004	_	0	0	_	_	~ 209	0	609	178	234	526
Stage 1	-	_	0	0	_	_	578	0	-	511	509	-
Stage 2	-	_	0	0	_	_	503	0	_	501	564	_
Platoon blocked, %		_	•	•	_	_	000	•		001	001	
Nov Cap-1 Maneuver	1004	_	_	_	_	_	~ 198	_	609	111	232	526
Nov Cap-2 Maneuver	-	-	_	-	_		~ 198	_	-	111	232	-
Stage 1	-	_	_	_	_	-	573	_	_	506	509	-
Stage 2	-	-	_	-	_	-	479	_	-	311	559	-
g										<u> </u>	230	
Approach	EB			WB			NB			SB		
ICM Control Delay, s	0.1			0			101.6			15.6		
ICM LOS							F			С		
/linor Lane/Major Mvmt	: NBLn1 I	NBLn2	EBL	EBT	WBT	WBR	SBLn1					
Capacity (veh/h)	198	609	1004	-	-	-	367					
ICM Lane V/C Ratio		0.373		-	-	-	0.077					
ICM Control Delay (s)	183.7	14.4	8.6	0	_	-	15.6					
ICM Lane LOS	F	В	Α	A	-	-	С					
ICM 95th %tile Q(veh)	12.6	1.7	0	-	-	-	0.2					
lotes												

	•	→	•	•	←	•	4	†	/	\	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	97	930	926	276	523	46	283	290	687	84	344	
v/c Ratio	0.54	0.93	1.16	0.85	0.37	0.07	0.81	0.80	0.92	0.36	0.74	
Control Delay	57.5	52.6	102.3	64.7	24.6	0.2	57.9	56.6	29.7	46.9	51.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	57.5	52.6	102.3	64.7	24.6	0.2	57.9	56.6	29.7	46.9	51.7	
Queue Length 50th (ft)	63	318	~480	177	132	0	182	186	108	52	112	
Queue Length 95th (ft)	123	#527	#795	285	202	0	#351	#352	#382	104	171	
Internal Link Dist (ft)		712			645			1250			786	
Turn Bay Length (ft)	90		240	180		100	515			75		
Base Capacity (vph)	358	1005	801	448	1407	690	407	422	780	428	850	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.27	0.93	1.16	0.62	0.37	0.07	0.70	0.69	0.88	0.20	0.40	

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	←	1	†	ļ
Lane Group	WBL	WBT	NBL	NBT	SBT
Lane Group Flow (vph)	326	1290	222	571	850
v/c Ratio	0.51	0.96	0.81	0.31	0.76
Control Delay	27.2	41.7	52.1	5.2	31.6
Queue Delay	0.2	0.0	0.1	0.3	0.1
Total Delay	27.4	41.7	52.1	5.5	31.7
Queue Length 50th (ft)	145	319	130	37	212
Queue Length 95th (ft)	240	#505	125	17	#308
Internal Link Dist (ft)		2130		247	297
Turn Bay Length (ft)			200		
Base Capacity (vph)	635	1342	418	2001	1122
Starvation Cap Reductn	0	0	6	828	0
Spillback Cap Reductn	42	0	0	0	12
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.55	0.96	0.54	0.49	0.77
Intersection Summary					

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

2: Mountain Ave & Evergreen St

	•	→	•	†	\	Ţ
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT
Lane Group Flow (vph)	357	355	209	594	425	550
v/c Ratio	0.68	0.34	0.34	0.49	0.78	0.26
Control Delay	34.2	24.8	4.8	24.9	23.0	11.7
Queue Delay	0.0	0.0	0.0	0.0	2.1	0.5
Total Delay	34.2	24.8	4.8	24.9	25.1	12.2
Queue Length 50th (ft)	172	79	0	133	173	117
Queue Length 95th (ft)	257	112	45	204	m286	153
Internal Link Dist (ft)		1293		344		247
Turn Bay Length (ft)			150		210	
Base Capacity (vph)	607	1215	680	1217	608	2083
Starvation Cap Reductn	0	0	0	0	83	1038
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.59	0.29	0.31	0.49	0.81	0.53
Intersection Summary						

m Volume for 95th percentile queue is metered by upstream signal.

	-	†	~	-	ļ
Lane Group	EBT	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	922	435	235	260	549
v/c Ratio	0.76	0.55	0.44	0.66	0.30
Control Delay	17.2	23.7	6.2	30.9	8.6
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	17.2	23.7	6.2	30.9	8.6
Queue Length 50th (ft)	106	73	0	86	53
Queue Length 95th (ft)	170	114	47	#172	80
Internal Link Dist (ft)	2524	98			219
Turn Bay Length (ft)					
Base Capacity (vph)	1219	790	536	395	1852
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.76	0.55	0.44	0.66	0.30
Intersection Summary					

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

ntersection nt Delay, s/veh	94.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations		र्स			î,		*		7		44	
Fraffic Vol, veh/h	4	345	0	0	487	8	388	0	361	0	0	7
uture Vol, veh/h	4	345	0	0	487	8	388	0	361	0	0	7
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	535	-	0	-	-	-
/eh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	375	0	0	529	9	422	0	392	0	0	8
Major/Minor	Major1		ľ	Major2		ľ	Minor1			Minor2		
Conflicting Flow All	538	0	-	-	-	0	921	-	375	1113	917	534
Stage 1	-	-	_	-	-	-	383	-	-	534	534	_
Stage 2	_	_	_	_	_	_	538	_	_	579	383	_
Critical Hdwy	4.12	-	-	_	_	-	7.12	_	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	_	_	_	_	6.12	_	-	6.12	5.52	-
Critical Hdwy Stg 2	_	_	_	_	_	_	6.12	_	-	6.12	5.52	_
Follow-up Hdwy	2.218	_	_	_	_	_	3.518	_	3 318	3.518		3.318
Pot Cap-1 Maneuver	1030	_	0	0	_		~ 251	0	671	186	272	546
Stage 1	-	_	0	0	_	_	640	0	-	530	524	-
Stage 2	-	_	0	0	_	_	527	0	_	501	612	_
Platoon blocked, %		_	J	•	_	_	02.			001	012	
Mov Cap-1 Maneuver	1030	_	-	_	_	-	~ 246	_	671	77	271	546
Mov Cap-2 Maneuver	-	_	_	_	_		~ 246	_	-	77	271	-
Stage 1	-	_	_	_	_	_	637	_	_	527	524	_
Stage 2	<u>-</u>	_	_	_	_	_	520	_	_	207	609	_
olugo L							020				000	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0			201.8			11.7		
HCM LOS							F			В		
Minor Lane/Major Mvm	t NBLn1	NBLn2	EBL	EBT	WBT	WBR	SBLn1					
Capacity (veh/h)	246	671	1030	-	-	-	546					
HCM Lane V/C Ratio		0.585	0.004	_	-	_	0.014					
HCM Control Delay (s)	\$ 373.1	17.6	8.5	0	_	_	11.7					
HCM Lane LOS	F	C	A	A	_	_	В					
HCM 95th %tile Q(veh)		3.8	0	-	_	-	0					
Notes												

	ၨ	→	•	•	←	•	4	†	/	\	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	64	284	390	362	1226	93	515	525	273	95	469	
v/c Ratio	0.47	0.29	0.54	1.45	0.96	0.15	1.13	1.13	0.46	0.35	0.87	
Control Delay	65.1	35.3	6.4	260.0	55.4	5.1	123.8	122.6	11.2	48.3	63.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	65.1	35.3	6.4	260.0	55.4	5.1	123.8	122.6	11.2	48.3	63.8	
Queue Length 50th (ft)	48	91	0	~381	~511	0	~488	~496	29	67	180	
Queue Length 95th (ft)	95	130	77	#572	#676	32	#766	#777	110	115	231	
Internal Link Dist (ft)		712			645			1250			786	
Turn Bay Length (ft)	90		240	180		100	515			75		
Base Capacity (vph)	147	973	718	250	1280	637	455	465	592	337	673	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.44	0.29	0.54	1.45	0.96	0.15	1.13	1.13	0.46	0.28	0.70	

Synchro 10 Report Duarte Station 04/04/2019 Fehr & Peers Page 4

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

1: Mountain Ave & Central Ave/I-210 WB Off-ramp

	•	•	1	Ť	↓
Lane Group	WBL	WBT	NBL	NBT	SBT
Lane Group Flow (vph)	277	774	317	688	1284
v/c Ratio	0.61	0.90dr	0.89	0.31	0.98
Control Delay	34.1	27.1	50.5	1.6	52.3
Queue Delay	0.3	0.0	2.2	0.3	39.6
Total Delay	34.3	27.1	52.7	2.0	91.9
Queue Length 50th (ft)	126	140	148	15	~470
Queue Length 95th (ft)	201	204	m0	m17	#626
Internal Link Dist (ft)		2130		247	297
Turn Bay Length (ft)			200		
Base Capacity (vph)	568	1174	418	2223	1307
Starvation Cap Reductn	0	0	33	896	0
Spillback Cap Reductn	48	0	0	0	165
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.53	0.66	0.82	0.52	1.12

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

dr Defacto Right Lane. Recode with 1 though lane as a right lane.

2: Mountain Ave & Evergreen St

	•	→	•	†	-	↓
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT
Lane Group Flow (vph)	360	1298	150	823	624	623
v/c Ratio	0.59	1.07	0.25	0.92	1.24	0.32
Control Delay	29.2	76.3	10.0	48.7	138.6	12.2
Queue Delay	0.0	0.0	0.0	0.0	0.9	1.0
Total Delay	29.2	76.3	10.0	48.7	139.5	13.2
Queue Length 50th (ft)	167	~434	21	233	~389	134
Queue Length 95th (ft)	258	#565	63	#348	m#455	m151
Internal Link Dist (ft)		1293		344		247
Turn Bay Length (ft)			150		210	
Base Capacity (vph)	607	1215	605	894	502	1922
Starvation Cap Reductn	0	0	0	0	51	977
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.59	1.07	0.25	0.92	1.38	0.66

Intersection Summary

Queue shown is maximum after two cycles.

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

m Volume for 95th percentile queue is metered by upstream signal.

	-	†	-	-	↓
Lane Group	EBT	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	801	757	368	221	466
v/c Ratio	0.70	1.12	0.61	0.45	0.25
Control Delay	23.2	101.3	8.1	24.5	9.2
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	23.2	101.3	8.1	24.5	9.2
Queue Length 50th (ft)	148	~202	0	78	52
Queue Length 95th (ft)	209	#306	66	138	77
Internal Link Dist (ft)	2524	98			219
Turn Bay Length (ft)					
Base Capacity (vph)	1146	677	600	490	1890
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.70	1.12	0.61	0.45	0.25

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Intersection												
Int Delay, s/veh 49.5	5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			1>		ች		7		4	
Fraffic Vol, veh/h	6	421	0	0	498	10	258	0	173	3	0	24
uture Vol, veh/h	6	421	0	0	498	10	258	0	173	3	0	24
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	_	_	None	_	-	None	-	-	None	-	-	None
Storage Length	_	_	-	_	-	-	535	_	0	-	_	-
Veh in Median Storage, #	-	0	_	-	0	_	_	0	-	-	0	-
Grade, %	_	0	_	_	0	_	_	0	-	-	0	_
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Nymt Flow	7	458	0	0	541	11	280	0	188	3	0	26
Will to the state of the state	•	100	J		011		200	Ū	100			
//ajor/Minor	Major1		N	//ajor2		N	Minor1			Minor2		
Conflicting Flow All	552	0		- -	_	0	1032	_	458	1113	1019	547
Stage 1	-	-	_	_	_	-	472	_	-	547	547	-
Stage 2	_	_	_	_	_	_	560	_	_	566	472	_
Critical Hdwy	4.12		_	_	_	_	7.12	_	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	7.12	_	_	_	_	_	6.12	_	0.22	6.12	5.52	0.22
Critical Hdwy Stg 2	_		_	_	_	_	6.12	_	_	6.12	5.52	_
Follow-up Hdwy	2.218	_	<u>-</u>	_	_		3.518	_				
Pot Cap-1 Maneuver	1018	_	0	0	_		~ 211	0	603	186	237	537
Stage 1	1010	_	0	0	_	_	573	0	-	521	517	-
Stage 2		_	0	0	_	_	513	0	_	509	559	_
Platoon blocked, %	_		U	U	_	_	010	U	_	303	553	
Mov Cap-1 Maneuver	1018	-	_	_	_		~ 199	_	603	127	235	537
Mov Cap-1 Maneuver	1010	_	-	_	_		~ 199	_	-	127	235	551
Stage 1		-	_	_	-	_	568	_	-	516	517	_
Stage 2			_	_		_	488		_	347	554	_
Olago 2	-						700			J -1 1	554	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0			159			14.8		
HCM LOS	0.1			•			F			В		
10111 200							•					
Minor Lane/Major Mvmt	NBLn11	NBLn2	EBL	EBT	WBT	WBR S	SBLn1					
Capacity (veh/h)	199	603	1018	-	-	-	395					
HCM Lane V/C Ratio		0.312		_	_	-	0.074					
ICM Control Delay (s)	256.4	13.7	8.6	0	-	-	14.8					
ICM Lane LOS	F	В	A	A	_	_	В					
HCM 95th %tile Q(veh)	16.5	1.3	0	-	_	-	0.2					
,	70.0	1.0					7.2					
Notes	ф. D	alau ee	d - 0/	20-	0	andelle	Nat D	ا ما ا	*. 41		ali	المال المال
: Volume exceeds capacity	\$: De	elay exc	eeds 30	JUS	+: Com	putation	i Not De	erined	": All	major	volume	in plato

	ၨ	→	•	•	•	•	•	†	~	\	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	100	997	1000	285	570	47	295	307	709	86	355	
v/c Ratio	0.56	1.01	1.27	0.86	0.41	0.07	0.83	0.83	0.95	0.37	0.76	
Control Delay	59.2	70.6	148.7	66.0	25.5	0.2	59.5	59.4	34.8	47.3	53.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	59.2	70.6	148.7	66.0	25.5	0.2	59.5	59.4	34.8	47.3	53.2	
Queue Length 50th (ft)	66	~383	~599	185	147	0	194	203	137	54	117	
Queue Length 95th (ft)	126	#586	#926	#312	224	0	#375	#388	#425	106	176	
Internal Link Dist (ft)		712			645			1250			786	
Turn Bay Length (ft)	90		240	180		100	515			75		
Base Capacity (vph)	352	984	790	439	1400	688	399	413	773	420	833	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.28	1.01	1.27	0.65	0.41	0.07	0.74	0.74	0.92	0.20	0.43	

Synchro 10 Report Duarte Station 04/04/2019 Fehr & Peers Page 4

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	←	1	†	ļ
Lane Group	WBL	WBT	NBL	NBT	SBT
Lane Group Flow (vph)	326	1290	222	586	855
v/c Ratio	0.52	0.96	0.81	0.31	0.76
Control Delay	27.3	42.3	51.3	5.1	31.6
Queue Delay	0.2	0.0	0.1	0.3	0.1
Total Delay	27.6	42.3	51.4	5.4	31.7
Queue Length 50th (ft)	146	321	120	24	213
Queue Length 95th (ft)	240	#505	122	17	#313
Internal Link Dist (ft)		2130		247	297
Turn Bay Length (ft)			200		
Base Capacity (vph)	632	1338	418	2001	1126
Starvation Cap Reductn	0	0	6	829	0
Spillback Cap Reductn	44	0	0	0	12
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.55	0.96	0.54	0.50	0.77
Intersection Summary					

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Duarte Station 04/04/2019 Fehr & Peers

Queue shown is maximum after two cycles.

2: Mountain Ave & Evergreen St

	۶	→	\rightarrow	†	\	ļ
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT
Lane Group Flow (vph)	357	362	209	609	425	555
v/c Ratio	0.68	0.34	0.34	0.50	0.78	0.27
Control Delay	34.2	24.9	4.8	25.3	23.5	11.8
Queue Delay	0.0	0.0	0.0	0.0	2.4	0.5
Total Delay	34.2	24.9	4.8	25.3	26.0	12.3
Queue Length 50th (ft)	172	81	0	140	176	118
Queue Length 95th (ft)	257	114	45	211	m285	155
Internal Link Dist (ft)		1293		344		247
Turn Bay Length (ft)			150		210	
Base Capacity (vph)	607	1215	680	1212	602	2083
Starvation Cap Reductn	0	0	0	0	85	1040
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.59	0.30	0.31	0.50	0.82	0.53
Intersection Summary						

m Volume for 95th percentile queue is metered by upstream signal.

	-	†	1	-	ļ
Lane Group	EBT	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	935	453	280	260	549
v/c Ratio	0.77	0.57	0.49	0.66	0.30
Control Delay	17.7	24.1	6.4	30.9	8.6
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	17.7	24.1	6.4	30.9	8.6
Queue Length 50th (ft)	108	76	0	86	53
Queue Length 95th (ft)	175	118	52	#172	80
Internal Link Dist (ft)	2524	98			219
Turn Bay Length (ft)					
Base Capacity (vph)	1219	790	571	395	1852
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.77	0.57	0.49	0.66	0.30
Intersection Summary					

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Intersection													
Int Delay, s/veh	105.1												
Movement		EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			ની			ĵ.				7		4	
Traffic Vol, veh/h		4	347	0	0	529	8	388	0	375	0	0	7
Future Vol, veh/h		4	347	0	0	529	8	388	0	375	0	0	7
Conflicting Peds, #/hr		0	0	0	0	0	0	0	0	0	0	0	0
Sign Control		Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized		-	_	None	_	_	None	-	-	None	-	-	None
Storage Length		_	_	-	_	_	-	535	_	0	_	_	-
Veh in Median Storage,	#	_	0	_	-	0	_	-	0	-	-	0	_
Grade, %	, ,,	_	0	_	_	0	_	_	0	_	_	0	_
Peak Hour Factor		92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %		2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow		4	377	0	0	575	9	422	0	408	0	0	8
WWIIICT IOW			311	U	U	313	3	722	U	400	U	U	U
Major/Minor	ľ	Major1		N	/lajor2		N	Minor1			Minor2		
Conflicting Flow All		584	0	-	-	-	0	969	-	377	1169	965	580
Stage 1		-	-	-	-	-	-	385	-	-	580	580	-
Stage 2		-	-	-	-	-	-	584	-	-	589	385	-
Critical Hdwy		4.12	-	-	-	-	-	7.12	-	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1		-	-	-	-	-	-	6.12	-	-	6.12	5.52	-
Critical Hdwy Stg 2		_	-	_	_	_	_	6.12	_	_	6.12	5.52	_
Follow-up Hdwy		2.218	_	-	_	_	_	3.518	_	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver		991	_	0	0	_		~ 233	0	670	170	255	514
Stage 1		-	_	0	0	-	_	638	0	-	500	500	-
Stage 2		_	_	0	0	_	_	498	0	-	494	611	_
Platoon blocked, %			_		·	_	_	100	•		101	011	
Mov Cap-1 Maneuver		991	_	_	-	_		~ 229	_	670	66	254	514
Mov Cap-2 Maneuver		-	_	_	_	_		~ 229	_	-	66	254	-
Stage 1		_	_	_			_	635	_	_	498	500	_
Stage 2		_	_	_	_	_	_	491			192	608	_
Olaye Z		_		_	_		_	T J I	-	_	132	500	
Approach		EB			WB			NB			SB		
HCM Control Delay, s		0.1			0			228.3			12.1		
HCM LOS								F			В		
Minor Lane/Major Mvmt	t <u></u>	NBLn11		EBL	EBT	WBT	WBR S						
Capacity (veh/h)		229	670	991	-	-	-	514					
HCM Lane V/C Ratio		1.842	0.608	0.004	-	-	-	0.015					
HCM Control Delay (s)	\$	431.2	18.4	8.6	0	-	-	12.1					
HCM Lane LOS		F	С	Α	Α	-	-	В					
HCM 95th %tile Q(veh)		29.5	4.1	0	-	-	-	0					
Notes													
~: Volume exceeds cap	acity	\$· D	alay eye	eeds 30	ηης	+. Com	putation	Not De	afined	*· ΔII	maior	volume	in plato
. volume exceeds cap	acity	ψ. Dt	siay EXC	GCU3 31	000	·. OUII	pulation	ו ווטנ טו	-IIII C U	. All	major	volullie	πι μιαιυ

	۶	-	•	•	←	•	4	†	/	\	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	64	299	478	362	1232	93	533	537	273	95	469	
v/c Ratio	0.47	0.31	0.61	1.45	0.96	0.15	1.17	1.15	0.46	0.35	0.87	
Control Delay	65.1	35.5	6.8	260.0	56.2	5.1	137.5	131.5	11.8	48.3	63.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	65.1	35.5	6.8	260.0	56.2	5.1	137.5	131.5	11.8	48.3	63.8	
Queue Length 50th (ft)	48	96	0	~381	~532	0	~518	~517	32	67	180	
Queue Length 95th (ft)	95	137	87	#572	#681	32	#800	#800	115	115	231	
Internal Link Dist (ft)		712			645			1250			786	
Turn Bay Length (ft)	90		240	180		100	515			75		
Base Capacity (vph)	147	973	781	250	1280	637	455	465	589	337	673	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.44	0.31	0.61	1.45	0.96	0.15	1.17	1.15	0.46	0.28	0.70	

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	←	1	†	ţ
Lane Group	WBL	WBT	NBL	NBT	SBT
Lane Group Flow (vph)	277	774	317	699	1300
v/c Ratio	0.60	0.91dr	0.89	0.31	1.00
Control Delay	34.0	27.5	50.0	1.7	55.6
Queue Delay	0.3	0.0	2.2	0.3	36.9
Total Delay	34.3	27.5	52.1	2.0	92.6
Queue Length 50th (ft)	126	142	147	16	~481
Queue Length 95th (ft)	201	206	m0	m18	#638
Internal Link Dist (ft)		2130		247	297
Turn Bay Length (ft)			200		
Base Capacity (vph)	568	1170	418	2220	1305
Starvation Cap Reductn	0	0	33	895	0
Spillback Cap Reductn	48	0	0	0	165
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.53	0.66	0.82	0.53	1.14

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

- m Volume for 95th percentile queue is metered by upstream signal.
- dr Defacto Right Lane. Recode with 1 though lane as a right lane.

	•	→	•	†	-	ļ
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT
Lane Group Flow (vph)	360	1317	150	834	624	639
v/c Ratio	0.59	1.08	0.25	0.93	1.24	0.33
Control Delay	29.2	81.7	10.3	50.5	138.3	12.4
Queue Delay	0.0	0.0	0.0	0.0	0.9	1.0
Total Delay	29.2	81.7	10.3	50.5	139.2	13.4
Queue Length 50th (ft)	167	~446	22	237	~390	140
Queue Length 95th (ft)	258	#577	64	#356	m#446	m155
Internal Link Dist (ft)		1293		344		247
Turn Bay Length (ft)			150		210	
Base Capacity (vph)	607	1215	603	894	502	1922
Starvation Cap Reductn	0	0	0	0	51	974
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.59	1.08	0.25	0.93	1.38	0.67

Queue shown is maximum after two cycles.

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

m Volume for 95th percentile queue is metered by upstream signal.

	-	†	~	-	ļ
Lane Group	EBT	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	842	768	400	221	466
v/c Ratio	0.73	1.13	0.64	0.45	0.25
Control Delay	23.8	107.2	8.3	24.5	9.2
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	23.8	107.2	8.3	24.5	9.2
Queue Length 50th (ft)	155	~207	0	78	52
Queue Length 95th (ft)	220	#312	69	138	77
Internal Link Dist (ft)	2524	98			219
Turn Bay Length (ft)					
Base Capacity (vph)	1150	677	626	490	1890
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.73	1.13	0.64	0.45	0.25

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

ntersection nt Delay, s/veh	54.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations		र्स			(Î		Ť		7		4	
raffic Vol, veh/h	6	427	0	0	527	10	258	0	217	3	0	24
uture Vol, veh/h	6	427	0	0	527	10	258	0	217	3	0	24
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	535	-	0	-	-	-
/eh in Median Storage,	# -	0	-	-	0	_	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
leavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
//wnt Flow	7	464	0	0	573	11	280	0	236	3	0	26
Major/Minor	Major1		ı	Major2		N	/linor1			Minor2		
Conflicting Flow All	584	0	_	-	_	0	1070	_	464	1175	1057	579
Stage 1	-	-	_	_	_	_	478	_	-	579	579	-
Stage 2	_	_	_	_	_	_	592	_	_	596	478	_
Critical Hdwy	4.12	_	_	_	_	_	7.12	_	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	_	_	_	_	_	6.12	_	-	6.12	5.52	-
Critical Hdwy Stg 2	_	_	_	_	_	_	6.12	_	_	6.12	5.52	_
Follow-up Hdwy	2.218	_	_	_	_	_	3.518	_	3.318		4.018	3 318
Pot Cap-1 Maneuver	991	_	0	0	_		~ 199	0	598	168	225	515
Stage 1	-	_	0	0	_	_	568	0	-	501	501	-
Stage 2	_	_	0	0	_	_	493	0	_	490	556	_
Platoon blocked, %		_		J	_	_	.00			.00	500	
Mov Cap-1 Maneuver	991	_	_	_	_	_	~ 187	_	598	101	223	515
Mov Cap-2 Maneuver	-	-	_	_	_		~ 187	_	-	101	223	-
Stage 1	-	_	-	_	_	-	562	_	_	496	501	-
Stage 2	-	-	_	-	_	-	468	_	-	294	550	-
							.00			_0.	300	
Approach	ЕВ			WB			NB			SB		
HCM Control Delay, s	0.1			0			168			16.1		
HCM LOS							F			С		
							_					
//inor Lane/Major Mvmt	NBLn11	NBLn2	EBL	EBT	WBT	WBR 9	SBLn1					
Capacity (veh/h)	187	598	991	-	-	-	354					
HCM Lane V/C Ratio				_	-	_	0.083					
HCM Control Delay (s)	296.8	14.9	8.7	0	-	-	16.1					
CM Lane LOS	F	В	A	A	-	_	С					
HCM 95th %tile Q(veh)	17.6	1.9	0	-	-	-	0.3					
Votes												

	→	→	•	1	←	•	4	†	/	\	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	100	1008	1060	285	586	47	344	351	709	86	355	
v/c Ratio	0.58	1.05	1.35	0.87	0.46	0.07	0.89	0.88	0.93	0.38	0.78	
Control Delay	60.4	81.0	187.2	67.8	27.6	0.2	66.4	64.7	30.9	47.6	55.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	60.4	81.0	187.2	67.8	27.6	0.2	66.4	64.7	30.9	47.6	55.0	
Queue Length 50th (ft)	66	~391	~685	185	152	0	234	240	137	54	117	
Queue Length 95th (ft)	126	#595	#1021	#312	231	0	#465	#470	#425	106	176	
Internal Link Dist (ft)		712			645			1250			786	
Turn Bay Length (ft)	90		240	180		100	515			75		
Base Capacity (vph)	341	961	783	426	1276	636	386	398	765	407	807	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.29	1.05	1.35	0.67	0.46	0.07	0.89	0.88	0.93	0.21	0.44	

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

CALTRANS ANALYSIS - MAINLINE

Phone: E-mail:		Fax:	
	Operational Analys	sis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 EB west of Mountain 2018		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	3751 0.94 998 5 0 Level - - 1.5 1.2 0.976 1.00 1023	veh/h v%%% mi pc/h/ln
	Speed Inputs and A	Adjustments	
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 64.0 - - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>
	LOS and Performan	ce Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1023 64.0 65.0 4 15.7	pc/h/ln mi/h mi/h pc/mi/ln

Phone: E-mail:		Fax:						
	Operational Analy	sis						
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 EB west of Mountain 2018							
77-1			1- /1-					
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	6137 0.94 1632 5 0 Level - - 1.5 1.2 0.976 1.00 1673	veh/h v%%% mi pc/h/ln					
	Speed Inputs and I	Adjustments						
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 64.0 - - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>					
LOS and Performance Measures								
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1673 64.0 63.9 4 26.2	pc/h/ln mi/h mi/h pc/mi/ln					

Phone: E-mail:		Fax:						
	Operational Analys	sis						
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 WB west of Mountain 2018	n						
	Flow Inputs and Ad	djustments						
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	T E, ER t, fHV	5765 0.94 1533 5 0 Level - 1.5 1.2 0.976 1.00 1572	veh/h v % % mi pc/h/ln					
	Speed Inputs and A	Adjustments						
Lane width Right-side lateral clea Total ramp density, TRD Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 64.0 - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>					
LOS and Performance Measures								
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1572 64.0 64.6 4 24.3	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>					

Phone: E-mail:		Fax:						
	Operational Analys	sis						
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 WB west of Mountain 2018	า						
	Flow Inputs and Ad	djustments						
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER it, fHV	4831 0.94 1285 5 0 Level - 1.5 1.2 0.976 1.00 1317	<pre>veh/h v % % % mi pc/h/ln</pre>					
	Speed Inputs and A	Adjustments						
Lane width Right-side lateral clear Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 64.0 - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>					
LOS and Performance Measures								
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1317 64.0 65.0 4 20.3	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>					

Phone: E-mail:		Fax:		
	Operational Analys	sis		
Date Performed: Analysis Time Period: Freeway/Direction: From/To:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 EB between Buena Vil land 2018	ista and Highla	nd	
	Flow Inputs and Ac	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, Recreational vehicle PCE Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	4266 0.94 1135 5 0 Level - 1.5 1.2 0.976 1.00 1163	veh/h v % % mi pc/h/ln	
	Speed Inputs and A	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 67.0 - - 67.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1163 67.0 65.0 4 17.9	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analys	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 EB between Buena V: land 2018	ista and Highla	nd	
	Flow Inputs and Ad	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	T E, ER t, fHV	4974 0.94 1323 5 0 Level - 1.5 1.2 0.976 1.00 1356	veh/h v % % mi pc/h/ln	
	Speed Inputs and A	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 67.0 - - 67.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1356 67.0 65.0 4 20.9	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:	Fax:			
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 WB between Buena V land 2018	ista and Highla	nd	
	Flow Inputs and A	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	T E, ER t, fHV	4616 0.94 1228 5 0 Level - 1.5 1.2 0.976 1.00 1258	veh/h v % % mi pc/h/ln	
	Speed Inputs and	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRD Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 66.0 - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1258 66.0 65.0 4 19.4	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 WB between Buena V land 2018	ista and Highla:	nd	
	Flow Inputs and A	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER it, fHV	4948 0.94 1316 5 0 Level - 1.5 1.2 0.976 1.00 1349	veh/h v % % mi pc/h/ln	
	Speed Inputs and I	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 66.0 - - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1349 66.0 65.0 4 20.8	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:	
	Operational Analy	sis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 EB east of Mt Oliv	re	
	Flow Inputs and A	djustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER ht, fHV	5586 0.94 1486 5 0 Level - 1.5 1.2 0.976 1.00 1218	<pre>veh/h v % % % mi pc/h/ln</pre>
	Speed Inputs and	Adjustments	
Lane width Right-side lateral clear Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment TRD adjustment Free-flow speed, FFS	fLW	- - 5 Measured 66.0 - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>
	LOS and Performan	ce Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1218 66.0 65.0 5 18.7	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 EB east of Mt Oliv 2018	е		
	Flow Inputs and A	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmer Driver population factor Flow rate, vp	CT CE, ER Lt, fHV	7015 0.94 1866 5 0 Level - 1.5 1.2 0.976 1.00 1530	veh/h v % % % mi pc/h/ln	
Speed Inputs and Adjustments				
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment TRD adjustment Free-flow speed, FFS	fLW	- - 5 Measured 66.0 - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1530 66.0 64.8 5 23.6	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 WB east of Mt Olive 2018			
****			1 /1	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	5851 0.94 1556 5 0 Level - - 1.5 1.2 0.976 1.00 1276	veh/h v%%% mi pc/h/ln	
	Speed Inputs and I	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment TRD adjustment Free-flow speed, FFS	fLW	- - 5 Measured 64.0 - - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1276 64.0 65.0 5 19.6	pc/h/ln mi/h mi/h pc/mi/ln	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 WB east of Mt Olive 2018			
	riow inputs and A	ajustilients		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	6648 0.94 1768 5 0 Level - 1.5 1.2 0.976 1.00 1450	veh/h v % % % mi pc/h/ln	
	Speed Inputs and I	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 5 Measured 64.0 - - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1450 64.0 65.0 5 22.3	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	/sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-605 NB south of Live ()ak		
	Flow Inputs and A	Adjustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmer Driver population factor Flow rate, vp	CT CE, ER ht, fHV	4854 0.94 1291 5 0 Level - 1.5 1.2 0.976 1.00 1323	<pre>veh/h v % % % mi pc/h/ln</pre>	
	Speed Inputs and	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS) flW	- - 4 Measured 66.0 - - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1323 66.0 65.0 4 20.4	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:	
	Operational Analy	/sis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-605 NB south of Live 0	Dak	
	$_{}$ Flow Inputs and I	Adjustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER ht, fhV	5161 0.94 1373 5 0 Level - 1.5 1.2 0.976 1.00 1407	veh/h v % % % mi pc/h/ln
	Speed Inputs and	Adjustments	
Lane width Right-side lateral clear Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment TRD adjustment Free-flow speed, FFS) flW	- - 4 Measured 66.0 - - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>
	LOS and Performar	nce Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1407 66.0 65.0 4 21.6	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>

Phone: E-mail:		Fax:		
	Operational Analy	rsis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-605 SB south of Live C)ak		
	Flow Inputs and A	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER Lt, fHV	5929 0.94 1577 5 0 Level - 1.5 1.2 0.976 1.00 1616	veh/h v%%% % mi pc/h/ln	
	Speed Inputs and	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 67.0 - - 67.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1616 67.0 64.3 4 25.1	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-605 SB south of Live O	ak		
	Flow Inputs and A	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER ht, fHV	6065 0.94 1613 5 0 Level - 1.5 1.2 0.976 1.00 1653	veh/h v % % % mi	
	Speed Inputs and	Adjustments		
Lane width Right-side lateral clear Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment Free-flow speed, FFS	fLW	- - 4 Measured 67.0 - - 67.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1653 67.0 64.1 4 25.8	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analys	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 EB west of Mountain 2018			
Volume V			rroh /h	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	3825 0.94 1017 5 0 Level - - 1.5 1.2 0.976 1.00 1043	veh/h v%%% mi pc/h/ln	
	Speed Inputs and A	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 64.0 - - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1043 64.0 65.0 4 16.0	pc/h/ln mi/h mi/h pc/mi/ln	

Phone: E-mail:		Fax:		
	Operational Analys	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 EB west of Mountain 2018			
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	T E, ER t, fHV	6161 0.94 1639 5 0 Level - 1.5 1.2 0.976 1.00 1680	veh/h v % % mi pc/h/ln	
	Speed Inputs and A	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 64.0 - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1680 64.0 63.9 4 26.3	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analys	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 WB west of Mountain 2018			
	Flow Inputs and Ad	ajustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER ht, fHV	5813 0.94 1546 5 0 Level - 1.5 1.2 0.976 1.00 1585	veh/h v % % % mi pc/h/ln	
	Speed Inputs and A	Adjustments		
Lane width Right-side lateral clear Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 64.0 - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1585 64.0 64.5 4 24.6	pc/h/ln mi/h mi/h pc/mi/ln	

Phone: E-mail:		Fax:		
	Operational Analys	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	I-210 WB west of Mountain 2018			
	Flow Inputs and Ad			
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	4901 0.94 1303 5 0 Level - 1.5 1.2 0.976 1.00 1336	veh/h v % % % mi pc/h/ln	
	Speed Inputs and A	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 64.0 - - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1336 64.0 65.0 4 20.6	pc/h/ln mi/h mi/h pc/mi/ln	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 EB between Buena V land 2018	ista and Highla	nd	
	Flow Inputs and A	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER it, fHV	4313 0.94 1147 5 0 Level - 1.5 1.2 0.976 1.00	<pre>veh/h v % % mi pc/h/ln</pre>	
	Speed Inputs and	Adjustments		
Lane width Right-side lateral clear Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment Free-flow speed, FFS	fLW	- - 4 Measured 67.0 - - 67.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1176 67.0 65.0 4 18.1	pc/h/ln mi/h mi/h pc/mi/ln	

Phone: E-mail:		Fax:		
	Operational Analys	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 EB between Buena V: land 2018	ista and Highla:	nd	
	Flow Inputs and Ad	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	T E, ER t, fHV	5022 0.94 1336 5 0 Level - 1.5 1.2 0.976 1.00 1369	veh/h v % % mi pc/h/ln	
	Speed Inputs and A	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 67.0 - - 67.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1369 67.0 65.0 4 21.1	pc/h/ln mi/h mi/h pc/mi/ln	

Phone: E-mail:		Fax:	
	Operational Analy	/sis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 WB between Buena V land 2018	/ista and Highla	ınd
	Flow Inputs and A	Adjustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER ht, fhV	4672 0.94 1243 5 0 Level - 1.5 1.2 0.976 1.00 1274	veh/h v % % % mi
	Speed Inputs and	Adjustments	
Lane width Right-side lateral clear Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment TRD adjustment Free-flow speed, FFS) flW	- - 4 Measured 66.0 - - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>
	LOS and Performar	nce Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1274 66.0 65.0 4 19.6	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>

Phone: E-mail:		Fax:	
	Operational Analy	ysis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 WB between Buena V land 2018	Jista and Highla	ınd
	Flow Inputs and A	Adjustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, Recreational vehicle PCH Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER ht, fhV	4979 0.94 1324 5 0 Level - 1.5 1.2 0.976 1.00 1357	veh/h v % % mi pc/h/ln
	Speed Inputs and	Adjustments	
Lane width Right-side lateral clear Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment TRD adjustment Free-flow speed, FFS) flW	- - 4 Measured 66.0 - - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>
	LOS and Performan	nce Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1357 66.0 65.0 4 20.9	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 EB east of Mt Oliv 2018			
	IIOW IMPACS and M			
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	5615 0.94 1493 5 0 Level - 1.5 1.2 0.976 1.00 1225	veh/h v % % mi pc/h/ln	
	Speed Inputs and	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 5 Measured 66.0 - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1225 66.0 65.0 5 18.8	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	I-210 EB east of Mt Olive 2018			
	Flow Inputs and A	ajustilients		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	7057 0.94 1877 5 0 Level - 1.5 1.2 0.976 1.00 1539	<pre>veh/h v % % % mi pc/h/ln</pre>	
	Speed Inputs and I	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRD Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 5 Measured 66.0 - - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1539 66.0 64.7 5 23.8	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analys	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 WB east of Mt Olive			
	Flow Inputs and Ad	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER Lt, fHV	5896 0.94 1568 5 0 Level - 1.5 1.2 0.976 1.00 1286	veh/h v % % mi pc/h/ln	
Speed Inputs and Adjustments				
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjust TRD adjustment Free-flow speed, FFS	fLW	- - 5 Measured 64.0 - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1286 64.0 65.0 5 19.8	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 WB east of Mt Oliv 2018	e		
	Flow Inputs and A	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmer Driver population factor Flow rate, vp	CT CE, ER ht, fHV	6662 0.94 1772 5 0 Level - 1.5 1.2 0.976 1.00 1453	veh/h v % % % mi	
	Speed Inputs and	Adjustments		
Lane width Right-side lateral clear Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjust TRD adjustment Free-flow speed, FFS	fLW	- - 5 Measured 64.0 - - 64.0	ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1453 64.0 65.0 5 22.4	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:	
	Operational Analy	sis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-605 NB south of Live On 2018 Flow Inputs and A		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	4928 0.94 1311 5 0 Level - 1.5 1.2 0.976 1.00 1343	veh/h v%%% % mi pc/h/ln
	Speed Inputs and I	Adjustments	
Lane width Right-side lateral clear Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment Free-flow speed, FFS	fLW		ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1343 66.0 65.0 4 20.7	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>

Phone: E-mail:		Fax:	
	Operational Analy	ysis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-605 NB south of Live (Dak	
	$_{}$ Flow Inputs and I	Adjustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER Lt, fHV	5185 0.94 1379 5 0 Level - 1.5 1.2 0.976 1.00 1413	veh/h v % % % mi pc/h/ln
	Speed Inputs and	Adjustments	
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 66.0 - - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>
	LOS and Performar	nce Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1413 66.0 65.0 4 21.7	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-605 SB south of Live C	ak		
	Flow Inputs and A	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER Lt, fHV	5977 0.94 1590 5 0 Level - 1.5 1.2 0.976 1.00 1629	<pre>veh/h v % % % mi pc/h/ln</pre>	
	Speed Inputs and	Adjustments		
Lane width Right-side lateral clear Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 67.0 - - - 67.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1629 67.0 64.3 4 25.4	pc/h/ln mi/h mi/h pc/mi/ln	

Phone: E-mail:		Fax:	
	Operational Analy	rsis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-605 SB south of Live C		
	$_{}$ Flow Inputs and I	Adjustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER Lt, fHV	6135 0.94 1632 5 0 Level - 1.5 1.2 0.976 1.00 1672	veh/h v % % % mi pc/h/ln
	Speed Inputs and	Adjustments	
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 67.0 - - 67.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>
	LOS and Performar	nce Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1672 67.0 64.0 4 26.1	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>

Phone: E-mail:		Fax:	
	Operational Analys	sis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 EB west of Mountain 2025 Flow Inputs and Ad		
	riow inputs and A		<u> </u>
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	3994 0.94 1062 5 0 Level - 1.5 1.2 0.976 1.00 1089	veh/h v % % mi pc/h/ln
	Speed Inputs and A	Adjustments	
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 64.0 - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>
	LOS and Performan	ce Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1089 64.0 65.0 4 16.8 B	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>

Phone: E-mail:		Fax:	
	Operational Analys	sis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 EB west of Mountain 2025		
	riow inputs and Ad	ajus cilierros	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	6489 0.94 1726 5 0 Level - 1.5 1.2 0.976 1.00 1769	veh/h v % % % mi pc/h/ln
	Speed Inputs and A	Adjustments	
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 64.0 - - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h</pre>
	LOS and Performan	ce Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1769 64.0 63.1 4 28.0	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 WB west of Mountain 2025			
****			1. /1.	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	6126 0.94 1629 5 0 Level - - 1.5 1.2 0.976 1.00 1670	veh/h v%%% mi pc/h/ln	
	Speed Inputs and I	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 64.0 - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1670 64.0 64.0 4 26.1	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 WB west of Mountai	n		
	Flow Inputs and A	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER Lt, fHV	5045 0.94 1342 5 0 Level - 1.5 1.2 0.976 1.00 1375	veh/h v % % mi pc/h/ln	
	Speed Inputs and	Adjustments		
Lane width Right-side lateral clear Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment Free-flow speed, FFS	fLW	- - 4 Measured 64.0 - - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1375 64.0 65.0 4 21.2	pc/h/ln mi/h mi/h pc/mi/ln	

Phone: E-mail:	Fax:			
	Operational Analy	/sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 EB between Buena V land 2025	ista and Highla	nd	
	Flow Inputs and A	Adjustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population factor Flow rate, vp	T E, ER t, fHV	4623 0.94 1230 5 0 Level - 1.5 1.2 0.976 1.00 1260	veh/h v%%% % mi	
	Speed Inputs and	Adjustments		
Lane width Right-side lateral clear Total ramp density, TRD Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment Free-flow speed, FFS	fLW	- - 4 Measured 67.0 - - - 67.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1260 67.0 65.0 4 19.4	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:	
	Operational Analy	/sis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 EB between Buena V land 2025	ista and Highla	nd
	Flow Inputs and A	Adjustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER ht, fhV	5214 0.94 1387 5 0 Level - - 1.5 1.2 0.976 1.00 1421	veh/h v % % % mi
	Speed Inputs and	Adjustments	
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS) flW	- - 4 Measured 67.0 - - 67.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>
	LOS and Performan	nce Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1421 67.0 65.0 4 21.9	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>

Phone: E-mail:		Fax:		
	Operational Analys	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 WB between Buena V: land 2025	ista and Highla	nd	
	Flow Inputs and Ad	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	T E, ER t, fHV	4967 0.94 1321 5 0 Level - 1.5 1.2 0.976 1.00 1354	veh/h v % % mi pc/h/ln	
	Speed Inputs and A	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 66.0 - - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS		1354 66.0 65.0 4 20.8	pc/h/ln mi/h mi/h pc/mi/ln	

Phone: E-mail:		Fax:		
	Operational Analys	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 WB between Buena V: land 2025	ista and Highla:	nd	
	Flow Inputs and Ad	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	5256 0.94 1398 5 0 Level - 1.5 1.2 0.976 1.00 1433	veh/h v % % mi pc/h/ln	
	Speed Inputs and A	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 66.0 - - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1433 66.0 65.0 4 22.1	pc/h/ln mi/h mi/h pc/mi/ln	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 EB east of Mt Oliv	re		
	Flow Inputs and A	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER ht, fHV	5916 0.94 1573 5 0 Level - 1.5 1.2 0.976 1.00 1290	veh/h v % % mi pc/h/ln	
	Speed Inputs and	Adjustments		
Lane width Right-side lateral clear Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment TRD adjustment Free-flow speed, FFS	fLW	- - 5 Measured 66.0 - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1290 66.0 65.0 5 19.8	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 EB east of Mt Olive	е		
	Flow Inputs and A	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	7298 0.94 1941 5 0 Level - 1.5 1.2 0.976 1.00 1592	<pre>veh/h v % % % mi pc/h/ln</pre>	
Speed Inputs and Adjustments				
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 5 Measured 66.0 - - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1592 66.0 64.5 5 24.7	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 WB east of Mt Olive 2025			
	IIOW INPUES and IN			
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	6175 0.94 1642 5 0 Level - 1.5 1.2 0.976 1.00 1347	veh/h v % % % mi pc/h/ln	
	Speed Inputs and I	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 5 Measured 64.0 - - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1347 64.0 65.0 5 20.7	pc/h/ln mi/h mi/h pc/mi/ln	

Phone: E-mail:		Fax:		
	Operational Analys	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 WB east of Mt Olive 2025			
	riow inputs and Ad			
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	6979 0.94 1856 5 0 Level - 1.5 1.2 0.976 1.00 1522	<pre>veh/h v % % % mi pc/h/ln</pre>	
	Speed Inputs and A	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 5 Measured 64.0 - - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1522 64.0 64.8 5 23.5	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-605 NB south of Live C			
	Flow Inputs and A	a justilients		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER Lt, fHV	5186 0.94 1379 5 0 Level - 1.5 1.2 0.976 1.00 1414	<pre>veh/h v % % mi pc/h/ln</pre>	
	Speed Inputs and	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjust TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 66.0 - - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1414 66.0 65.0 4 21.8	pc/h/ln mi/h mi/h pc/mi/ln	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-605 NB south of Live Of 2025			
77.2	<u> </u>			
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	5521 0.94 1468 5 0 Level - - 1.5 1.2 0.976 1.00 1505	veh/h v%%% % mi	
	Speed Inputs and I	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 66.0 - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1505 66.0 64.8 4 23.2	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-605 SB south of Live Of 2025			
77.2 3 s m c				
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmer Driver population factor Flow rate, vp	CT CE, ER Lt, fHV	6351 0.94 1689 5 0 Level - 1.5 1.2 0.976 1.00 1731	veh/h v%%% mi pc/h/ln	
	Speed Inputs and I	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjust TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 67.0 - - 67.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1731 67.0 63.4 4 27.3	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-605 SB south of Live Of			
	Flow Inputs and A	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmer Driver population factor Flow rate, vp	CT CE, ER ht, fHV	6338 0.94 1686 5 0 Level - 1.5 1.2 0.976 1.00 1728	veh/h v % % % mi pc/h/ln	
	Speed Inputs and I	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 67.0 - - 67.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1728 67.0 63.5 4 27.2	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 EB west of Mountain	n		
	Flow Inputs and A	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmer Driver population factor Flow rate, vp	ET E, ER it, fHV	4068 0.94 1082 5 0 Level - 1.5 1.2 0.976 1.00 1109	veh/h v % % mi pc/h/ln	
Speed Inputs and Adjustments				
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 64.0 - - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1109 64.0 65.0 4 17.1 B	pc/h/ln mi/h mi/h pc/mi/ln	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	I-210 EB west of Mountain 2025			
	Flow Inputs and A	ajustillerits		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	T E, ER t, fHV	6513 0.94 1732 5 0 Level - 1.5 1.2 0.976 1.00 1775	<pre>veh/h v % % % mi pc/h/ln</pre>	
	Speed Inputs and I	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRD Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 64.0 - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1775 64.0 63.0 4 28.2 D	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analys	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	I-210 WB west of Mountain 2025			
	Flow Inputs and Ad	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	6174 0.94 1642 5 0 Level - 1.5 1.2 0.976 1.00 1683	veh/h v % % % mi pc/h/ln	
	Speed Inputs and A	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRD Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 64.0 - - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1683 64.0 63.9 4 26.4	pc/h/ln mi/h mi/h pc/mi/ln	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 WB west of Mountai	n		
	Flow Inputs and A	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER at, fhV	5115 0.94 1360 5 0 Level - 1.5 1.2 0.976 1.00 1394	veh/h v % % mi pc/h/ln	
	Speed Inputs and	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 64.0 - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1394 64.0 65.0 4 21.4	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:	
	Operational Analy	/sis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 EB between Buena V land 2025	/ista and Highla	ınd
	Flow Inputs and A	Adjustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER ht, fhV	4670 0.94 1242 5 0 Level - 1.5 1.2 0.976 1.00 1273	veh/h v % % % mi
	Speed Inputs and	Adjustments	
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS) flW	- - 4 Measured 67.0 - - 67.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>
	LOS and Performar	nce Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1273 67.0 65.0 4 19.6	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>

Phone: E-mail:		Fax:		
	Operational Analys	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 EB between Buena V: land 2025	ista and Highla	nd	
	Flow Inputs and Ad	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	T E, ER t, fHV	5262 0.94 1399 5 0 Level - 1.5 1.2 0.976 1.00 1434	veh/h v % % mi pc/h/ln	
	Speed Inputs and A	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 67.0 - - - 67.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1434 67.0 65.0 4 22.1	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:	
	Operational Analy	sis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 WB between Buena V. land 2025	ista and Highla	nd
	Flow Inputs and A	djustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, Recreational vehicle PCE Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER Lt, fHV	5023 0.94 1336 5 0 Level - 1.5 1.2 0.976 1.00 1369	veh/h v % % % mi pc/h/ln
	Speed Inputs and I	Adjustments	
Lane width Right-side lateral clear Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjust TRD adjustment Free-flow speed, FFS	fLW	- 4 Measured 66.0 - - 66.0	ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h
	LOS and refrontant		n a /b /1 n
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1369 66.0 65.0 4 21.1	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>

Phone: E-mail:		Fax:		
	Operational Analys	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 WB between Buena V: land 2025	ista and Highla	nd	
	Flow Inputs and Ad	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	T E, ER t, fHV	5287 0.94 1406 5 0 Level - 1.5 1.2 0.976 1.00	veh/h v % % mi pc/h/ln	
	Speed Inputs and A	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 66.0 - - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1441 66.0 65.0 4 22.2	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	/sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 EB east of Mt Oliv	<i>7</i> e		
	$_{}$ Flow Inputs and I	Adjustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER Lt, fHV	5945 0.94 1581 5 0 Level - 1.5 1.2 0.976 1.00 1297	veh/h v % % % mi pc/h/ln	
	Speed Inputs and	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 5 Measured 66.0 - - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1297 66.0 65.0 5 20.0	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 EB east of Mt Oliv	re		
	Flow Inputs and A	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	7340 0.94 1952 5 0 Level - 1.5 1.2 0.976 1.00 1601	<pre>veh/h v % % % mi pc/h/ln</pre>	
Speed Inputs and Adjustments				
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 5 Measured 66.0 - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1601 66.0 64.4 5 24.8	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analys	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-210 WB east of Mt Olive 2025			
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER t, fHV	6220 0.94 1654 5 0 Level - 1.5 1.2 0.976 1.00 1356	veh/h v % % mi pc/h/ln	
	Speed Inputs and A	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 5 Measured 64.0 - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1356 64.0 65.0 5 20.9	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-210 WB east of Mt Olive	9		
	Flow Inputs and A	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER at, fHV	6993 0.94 1860 5 0 Level - 1.5 1.2 0.976 1.00 1525	<pre>veh/h v % % mi pc/h/ln</pre>	
Speed Inputs and Adjustments				
Lane width Right-side lateral clear Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment TRD adjustment Free-flow speed, FFS	fLW	- - 5 Measured 64.0 - - 64.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1525 64.0 64.8 5 23.5	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-605 NB south of Live Oc			
	Flow Inputs and A	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmer Driver population factor Flow rate, vp	ET E, ER et, fHV	5260 0.94 1399 5 0 Level - 1.5 1.2 0.976 1.00 1434	veh/h v % % % mi pc/h/ln	
	Speed Inputs and I	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 66.0 - - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	peed, S	1434 66.0 65.0 4 22.1	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-605 NB south of Live O	ak		
	Flow Inputs and A	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	CT CE, ER ht, fHV	5545 0.94 1475 5 0 Level - 1.5 1.2 0.976 1.00 1512	veh/h v % % % mi	
	Speed Inputs and	Adjustments		
Lane width Right-side lateral clear Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 66.0 - - 66.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1512 66.0 64.8 4 23.3	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 4-5 PM I-605 SB south of Live Oct 2025	ak		
	Flow Inputs and A	djustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmer Driver population factor Flow rate, vp	ET EE, ER it, fHV	6399 0.94 1702 5 0 Level - 1.5 1.2 0.976 1.00 1744	veh/h v % % mi pc/h/ln	
	Speed Inputs and I	Adjustments		
Lane width Right-side lateral clea Total ramp density, TRI Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjust TRD adjustment Free-flow speed, FFS	fLW	- - 4 Measured 67.0 - - 67.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1744 67.0 63.3 4 27.5	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>	

Phone: E-mail:		Fax:		
	Operational Analy	sis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description:	Michael Kao Fehr & Peers 4/9/2019 8-9 AM I-605 SB south of Live O			
	Flow Inputs and A	ajustments		
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	ET E, ER it, fHV	6408 0.94 1704 5 0 Level - 1.5 1.2 0.976 1.00 1747	veh/h v % % % mi pc/h/ln	
	Speed Inputs and	Adjustments		
Lane width Right-side lateral clear Total ramp density, TRE Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment Free-flow speed, FFS	fLW	- - 4 Measured 67.0 - - 67.0	ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h	
LOS and Performance Measures				
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D Level of service, LOS	speed, S	1747 67.0 63.3 4 27.6	pc/h/ln mi/h mi/h pc/mi/ln	